首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 286 毫秒
1.
通过高温压缩试验研究齿轮钢SAE8620H在950~1100℃、应变速率0.01~10 s-1条件下的高温变形行为.该合金钢的流动应力符合稳态流变特征,流变应力随变形温度升高以及应变速率降低而减小,其本构方程可以采用双曲正弦方程来描述.基于峰值应力、应变速率和温度相关数据推导出SAE8620H高温变形激活能Q=280359.9 J·mol-1.根据变形量40%和60%下应力构建该齿轮钢的热加工图,通过热加工图中耗散值及流变失稳区确定其热变形工艺参数范围.SAE8620H钢在在变形程度较小时宜选取低的应变速率进行成形,而在变形程度大时则要选取低温低应变速率或者高温高应变速率.   相似文献   

2.
曾莉  张威  王琦  朱丽丽 《钢铁》2017,52(10)
为了研究超级奥氏体不锈钢Cr20Ni24Mo6N钢的高温变形行为,采用Gleeble热模拟试验机进行了等温压缩试验,建立了合金的热加工图。结果表明,当变形温度为1 000~1 200℃时,Cr20Ni24Mo6N钢的流变曲线表现出典型的"加工硬化+动态再结晶软化"特点;Cr20Ni24Mo6N钢的热激活能Q为678.656 kJ/mol。通过加工图与微观组织综合分析得出,超级奥氏体不锈钢Cr20Ni24Mo6N的合适热加工工艺为,应变速率为10 s~(-1)左右,应变量为0.5~0.8,变形温度为1 150~1 200℃。  相似文献   

3.
为了解决Cr20Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 k J·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

4.
采用Gleeble3800热模拟试验机,研究了0.3%V改型07Cr25Ni21NbN试验钢在930~1 230℃、0.005~5s~(-1)条件下的热变形行为。利用金相显微镜观察了试验钢微观组织随热加工条件的变化。分析了试验钢的流变应力曲线,得到其热形变激活能为571kJ/mol。真应变分别为0.4和0.8条件下,建立了试验钢的热加工图,发现真应变为0.8的热加工图上有3个耗散功峰值区域的边界。变形温度为1 230℃,变形速率从0.005到5s~(-1)时,试验钢的微观组织由粗大的锯齿晶粒过渡到较细小的等轴晶粒。当变形速率为0.5s~(-1)时,变形温度从930℃提高到1 230℃时,微观组织由等轴组织、部分动态再结晶组织过渡到流变失稳组织。  相似文献   

5.
《特殊钢》2017,(1)
试验用EA1N钢(/%:0.35C,0.30Si,0.90Mn,0.013P,0.008S,0.15Cr,0.10Ni,0.10Cu,0.04V,0.04Al)的冶金流程为60 t EBT EAF-LF-VD-下铸8.4 t方锭-车成150 mm×150 mn方坯。采用Gleeble-3800型热模拟机试验研究了EA1N钢在800~1 300℃、应变速率0.01~10 s~(-1)时的热压缩变形,分析该钢变形时的流变应力、应变速率及变形温度之间的关系,得出流变应力方程。结果表明,EA1N钢在热压缩变形时流变应力随应变速率提高而增大,随变形温度升高而降低,当温度高于1 100℃和应变速率大于1 s~(-1)时,该钢流变曲线呈现明显的动态再结晶特征。EA1N钢的热变形激活能为392.43 kJ/mol。  相似文献   

6.
在Gleeble-3800热模拟试验机上进行大变形等温压缩试验,研究Cr-Co-Mo-Ni齿轮钢的高温热变形行为和显微组织,分析材料流变应力与变形温度和应变速率的关系,建立热变形过程的本构方程和热加工图.该材料的流变应力随着温度的升高而下降,随应变速率的增加而增加;用双曲正弦函数式可描述其在热变形过程中的流变应力,热变形活化能为487.21k J·mol-1;热加工图显示的适宜加工区间为温度1000-1100℃,应变速率0.1-1 s-1.在热模拟试验基础上进行该钢种锻造工艺的有限元模拟,并结合热加工图分析初锻温度和加工道次对于锻件温度和应变速率的影响,得出适宜的模锻工艺参数为初锻温度1000-1100℃,锻造道次15次.   相似文献   

7.
采用Gleeble-1500热模拟试验机对V-5Cr-5Ti合金进行了热模拟压缩试验。研究了V-5Cr-5Ti合金在变形温度为1373~1493 K、应变速率为0.1~30.0 s-1工艺条件下的流变行为,建立了合金高温变形的流变应力模型和加工图,并观察了合金变形后的金相组织。研究结果表明:流变应力和峰值应变随变形温度的降低和应变速率的提高而增大。以热模拟压缩试验为基础,通过对真应力-应变曲线的分析与计算得到了V-5Cr-5Ti合金的热变形激活能Q值为468.25 k J·mol-1,建立了V-5Cr-5Ti合金高温变形的流变应力模型。同时,建立了描述V-5Cr-5Ti合金热加工性能的热加工图,其由3部分组成,即Ⅰ变形安全区,Ⅱ变形安全区以及流变失稳区,其中流变失稳区呈对角线连续分布。在绘制、分析V-5Cr-5Ti合金的热加工图的基础上,结合组织分析得出,V-5Cr-5Ti合金最适合在Ⅱ变形安全区内采用液压机进行变形加工。  相似文献   

8.
为了研究TA17钛合金热轧条件下的高温变形行为及热加工特性,在热模拟机上开展变形温度为700~1100℃、应变速率为1~40 s~(-1)条件下的热压缩实验,建立基于Arrhenius模型的本构方程,以及应变分别为0.3和0.6时的热加工图,结合热变形显微组织分析,研究该合金的热塑性变形机制。结果表明:TA17钛合金流变应力随着变形温度的升高而降低,随着应变速率的升高而升高。在温度为800~1000℃、应变速率为1~10 s~(-1)时,材料的变形机制主要为动态再结晶;温度为1000~1100℃、应变速率为1~10 s~(-1)时,材料发生动态回复;温度为700~800℃或1000~1100℃、应变速率大于20 s~(-1)时,材料产生绝热剪切带;温度为700~800℃,应变速率为1~5 s~(-1)时,材料易产生裂纹。得出该合金较优的热轧工艺参数为:变形温度800~1000℃,应变速率1~10 s~(-1)。  相似文献   

9.
为了研发高性能颗粒增强铝基复合材料,采用Gleeble-3800热模拟试验机,研究了粉末冶金15%SiC_p/2009A1复合材料在变形温度为370~520℃、应变速率为0.01~10.00 s-1条件下的高温变形特性。结果表明,当变形速率一定时,该复合材料的流变应力随变形温度升高而降低;当变形温度一定时,复合材料的流变应力随应变速率增大而提高。采用动态材料模型建立了15%SiC_p/2009A1复合材料的热加工图。热加工图表明,在较高应变速率区域(2.00~10.00 s~(-1)),出现流变失稳,有少量颗粒—基体界面开裂和SiC颗粒本身破碎。该复合材料的动态再结晶区域位于加工图的较低应变速率区域(1.00 s~(-1)),功率耗散率值较为适中,为0.24~0.35,此时材料具有良好的塑性,适合进行热加工变形。综合加工图以及微观组织观察结果,获得了复合材料热变形的最佳工艺参数:变形温度为450~490℃、应变速率为0.01~0.10 s~(-1)。  相似文献   

10.
《钢铁》2015,(11)
在Gleeble-3800热模拟试验机上,利用热压缩变形研究EH47号船板钢的热变形特性。设置最大真应变为0.7,变形温度分别为950、1 000、1 050、1 100、1 150℃,变形速率为0.1、0.5、1、5、10 s-1。利用试验所得数据通过一系列公式计算并绘制热加工图,结合不同压缩工艺得到的金相组织对比发现:变形温度为(1 000±10)℃、应变速率为0.1 s-1区域耗散率因子η值达0.62以上,再结晶晶粒细小而均匀,为热加工最佳工艺参数;而变形温度为950~1 050℃、应变速率为0.5~2 s-1区域再结晶晶粒较少,晶粒尺寸参差不齐为加工失稳区,热加工时应避免选择该区域。根据热加工图中得出的最佳热加工工艺参数,计算得出现场最佳轧制参数:轧制温度为1 000℃,压下量为15~20 mm。  相似文献   

11.
运用Gleeble-3800热模拟试验机研究了1Cr17Ni1马氏体-铁素体双相不锈钢在变形温度为950~1150℃、应变速率为0.1~10 s-1条件下的热压缩变形行为。运用双曲正弦函数构建了本构方程,得到了表观激活能为391.586 kJ/mol,并基于动态材料模型绘制了1Cr17Ni1钢不同应变量下的热加工图。观察变形后的组织形貌得到较低温度下发生动态回复与动态再结晶,较高温度只发生动态回复,综合热加工图与变形后组织得到最佳热变形工艺:热加工温度范围为950~1000℃、热加工变形速率范围为0.1~0.3和5~10 s-1。  相似文献   

12.
采用Gleeble-3800热模拟试验机对20CrMnTiH钢进行了等温热压缩试验,研究了该钢在变形温度为850~1 150℃、应变速率为0.01~10 s~(-1)条件下的高温热变形行为,运用数学回归方法和热力学不可逆原理,建立了20CrMnTiH钢应变补偿的唯象本构方程和动态再结晶模型,并对该应变补偿的唯象本构模型进行了有效验证。在真应力-真应变曲线中,变形温度和应变速率对20CrMnTiH钢的流变应力影响显著,表现出正的应变速率敏感性和负的温度敏感性;由本构模型计算得到的流变应力值与试验值两者之间有很好的相关性(R=0.976 64),平均相对误差为5.544 2%;在应变硬化速率与流变应力关系曲线中,利用单一参数法和求解拐点法获得了不同变形条件下动态再结晶的临界应力σ_c和临界应变ε_c值,建立了临界应力、临界应变和Zener-Hollomon参数的数学模型ε≥ε_c=0.007 9 lnZ-0.153 23,且临界应变ε_c随着温度补偿应变速率因子Z的增加而增加。  相似文献   

13.
W. Feng  F. Qin 《钢铁冶炼》2018,45(4):317-324
The processing map of 20CrMnTiH steel is developed by using the dynamic material model according to the hot compression experiments, performed on a Gleeble-3500 thermal simulator at the temperature range of 850–1150°C and the strain rate of 0.01–1?s?1. Hot workability characteristics of 20CrMnTiH steel are analysed based on the developed processing map. The safe deformation regions with higher power dissipation efficiency η exhibit the dynamic recrystallisation (DRX) mechanism and show fine and homogeneous microstructure. The unstable regions with negative instability coefficient ξ occur at both lower temperature with all strain rates and at high temperature with high strain rate at the strain of 0.2. The area of instability gradually decreases with the increasing strain and only appears at lower temperature and higher strain rate when the strain is above 0.2. The unstable regions indicate the flow localisation by microstructure analysis. Combining with the developed processing map with DRX behaviour, the optimal values of hot processing parameters for 20CrMnTiH steel are obtained to achieve good hot workability and small grains sizes at the process parameters ranged at 1036–1070°C/0.1–1?s?1 and 918–985°C/0.01–0.014?s?1.  相似文献   

14.
摘要:采用ThermecmastorZ热模拟试验机研究了EH40船板钢在850~1050℃,0.005~10s-1条件下的热变形行为,通过动态材料模型得到该区域的热变形与变形抗力方程并建立了EH40船板钢热加工图。结果表明,EH40船板钢的变形抗力模型的预测值与试验值吻合良好,EH40船板钢的热变形激活能为324.479kJ/mol,由热加工图确立出EH40船板钢最优的热加工窗口是应变不高于0.4,温度在850~1050℃,应变速率为小于10s-1的加工区域,较易发生动态再结晶。  相似文献   

15.
RAFM钢应变补偿本构关系及热加工图   总被引:1,自引:0,他引:1  
邱国兴  白冲  蔡明冲  王建立  李小明  曹磊 《钢铁》2022,57(11):157-166
 低活化铁素体/马氏体(RAFM)钢具有较低的辐照肿胀率和优异的力学性能,被认为是聚变堆首选的结构材料。然而,低活化钢强度高、冷塑性变形抗力大的特点,使其难以通过冷加工或低温加工实现大规模生产。使用MMS-200型热模拟试验机,在变形温度为950~1 200 ℃、应变速率为0.1~5 s-1和最大变形量为50%条件下,进行了低活化铁素体/马氏体钢(0.11C-9.4Cr-1.35W-0.22V-0.05Si-0.11Ta-0.50Mn)单道次热压缩试验,研究其热变形行为。基于动态材料模型构建了不同应变量下的低活化钢变形本构方程和热加工图,确定了最优热加工参数,结合金相结果分析了材料变形过程中微观组织演化规律,为低活化钢的热加工成形工艺及组织优化提供理论参考。结果表明,在相同应变速率下,随着变形温度升高,流变应力逐渐降低,在一定变形温度下,流变应力随应变速率增大而增大;温度和应变速率对组织的影响主要取决于变形过程中材料内部发生的动态回复和再结晶等机制的交互作用。使用六阶多项式拟合进行应变补偿建立的低活化钢变形本构方程具有较高的预测精度,平方相关系数为0.972。显微组织和热加工图分析结果表明,温度升高为再结晶提供了充足能量,材料软化机制由动态回复转变为动态再结晶;减小应变速率,能量有足够时间扩散,有利于动态再结晶的进行;在变形温度为1 060~1 130 ℃、应变速率为0.13~0.36 s-1条件下和合金耗散系数η达到36%的最佳热加工参数范围,可获取到均匀动态再结晶组织。  相似文献   

16.
利用Gleeble-1500D热模拟实验机研究机械合金化法制备的14Cr-ODS铁素体钢在变形温度为1 050~1 200℃、应变速率为0.001~0.3 s 1条件下的高温变形行为,测定其真应力真应变曲线,分析流变应力随应变速率以及变形温度的变化关系。应用MATLAB软件计算最佳的应力水平参数,通过线性回归分析得出材料的变形激活能、材料常数和材料的双曲线本构方程,构造14Cr-ODS铁素体钢的热加工图。结果表明:14Cr-ODS铁素体钢的流变应力随温度升高而减小,随应变速率增加而增大;其变形激活能为501.11 kJ/mol,最佳应力水平参数为0.007,应力指数为4.08;加工失稳温度区域为1 050~1 100℃,应变速率区域为0.1~0.3 s 1;适合加工的条件是变形温度为1 150℃,应变速率为0.1 s 1。  相似文献   

17.
为了获得C HRA 5钢轧制生产的最佳工艺参数,采用Gleeble 3800热力模拟试验机对C HRA 5钢进行了双道次热压缩实验。实验在变形温度范围为900~1100℃,应变速率范围为001~1s-1,道次间隙时间分别为1、5、15、30s的条件下获得C-HRA -5钢的真应力 应变曲线。采用0.2%补偿法计算得到了软化分数,且软化分数随变形温度的升高和应变速率的增大而增加。通过线性回归分析得到了MDRX的动力学方程。建立的C-HRA-5钢热加工图表明材料在1000~1100℃的范围内变形稳定。此外,道次间隙时间为5s时,C-HRA-5钢在较低温度下进行第2道次压缩的过程中不会出现失稳。  相似文献   

18.
马昕  许斯洋  周舸  丁桦 《中国冶金》2022,32(9):26-36
为获得Ni60Ti40形状记忆合金热变形的最佳工艺参数,利用等温恒速率热压缩试验研究了在温度为800~1 000 ℃、应变速率为0.005~5.000 s-1条件下Ni60Ti40合金的热变形行为,通过探究不同变形温度和应变速率对Ni60Ti40合金流变行为的影响创建本构关系,并以动态材料模型为基础构建热加工图。结果表明,Ni60Ti40合金的流变应力随变形温度的升高而减小、随应变速率的升高而增大。温度为900~1 000 ℃、应变速率为0.005~0.500 s-1时,流变应力较快达到稳态,且所需的变形量较少。采用Arrhenius双曲正弦模型构建的Ni60Ti40合金热变形的流变应力本构关系模型可基本准确地预测实际流变应力随工艺参数的变化趋势,计算得到Ni60Ti40合金的平均热变形激活能为213 kJ/mol。Ni60Ti40合金的热变形有3个稳定变形区和1个失稳区,适宜变形的区域为800~870 ℃/0.005~0.080 s-1、870~950 ℃/0.080~0.500 s-1和950~1 000 ℃/0.050~5.000 s-1;不适合进行热加工的区域为800~850 ℃/0.220~5.000 s-1。  相似文献   

19.
马昕  许斯洋  周舸  丁桦 《中国冶金》2006,32(9):26-36
为获得Ni60Ti40形状记忆合金热变形的最佳工艺参数,利用等温恒速率热压缩试验研究了在温度为800~1 000 ℃、应变速率为0.005~5.000 s-1条件下Ni60Ti40合金的热变形行为,通过探究不同变形温度和应变速率对Ni60Ti40合金流变行为的影响创建本构关系,并以动态材料模型为基础构建热加工图。结果表明,Ni60Ti40合金的流变应力随变形温度的升高而减小、随应变速率的升高而增大。温度为900~1 000 ℃、应变速率为0.005~0.500 s-1时,流变应力较快达到稳态,且所需的变形量较少。采用Arrhenius双曲正弦模型构建的Ni60Ti40合金热变形的流变应力本构关系模型可基本准确地预测实际流变应力随工艺参数的变化趋势,计算得到Ni60Ti40合金的平均热变形激活能为213 kJ/mol。Ni60Ti40合金的热变形有3个稳定变形区和1个失稳区,适宜变形的区域为800~870 ℃/0.005~0.080 s-1、870~950 ℃/0.080~0.500 s-1和950~1 000 ℃/0.050~5.000 s-1;不适合进行热加工的区域为800~850 ℃/0.220~5.000 s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号