首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
在高速切削、高速滑动磨损和爆炸焊接等工程应用中,材料塑性变形的应变速率高达10^3~10^7s^-1。在这种情况下,应力状态是多向而不是单向的,塑性变形是绝热的并受到强制约束。  相似文献   

2.
研究了真空环境中TA32钛合金在950℃,初始变形速率在5.32×10-4~2.08×10-2s-1条件下的超塑性变形行为。结果表明,不同应变速率条件下,板材的流变应力曲线特征和显微组织演变呈现显著不同。在应变速率较低条件下(5.32×10-4 ~3.33×10-3s-1),拉伸真应力-应变曲线呈传统超塑变形的稳态流动特征,变形后的板材中初生α相晶粒尺寸较大;在高应变速率(8.31×10-3 s-1~2.08×10-2 s-1)条件下,拉伸真应力-应变曲线中流变应力增大到峰值后快速单调递减直到断裂,变形后的板材中初生α相发生动态再结晶,晶粒尺寸与低应变速率条件拉伸的板材相比显著细化。在950℃下,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间,当应变速率为5.32×10-4s-1时,板材具有最佳的超塑性性能,拉伸延伸率可达519%。断裂区分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

3.
利用CMT5105电子万能试验机和HTM 16020电液伺服高速试验机对超高强热成形钢进行拉伸试验,应变速率范围为10-3~103 s-1,模拟热成形零件在不同应变速率下的碰撞情况.结果表明:在低应变速率阶段(10-3~10-1 s-1)实验钢的应变速率敏感性不高,随应变速率的升高,实验钢的强度和延伸率变化不大;在高应变速率阶段(100~103 s-1)实验钢具有高的应变速率敏感性,随应变速率的升高,实验钢的强度和延伸率都呈增大的趋势,并且抗拉强度的应变速率敏感性要大于屈服强度.这主要是由于在高应变速率阶段拉伸时产生的绝热温升现象和应变硬化现象共同作用造成的.实验钢颈缩后的延伸率随应变速率的增大而减小,主要是由于高应变速率下马氏体局部变形不均匀造成的.实验钢吸收冲击功的能力随应变速率的升高而增大,实验钢达到均匀延伸率时吸收冲击功的大小对应变速率更敏感.与低应变速率阶段相比,实验钢在高应变速率阶段的断口韧窝的平均直径更小,韧窝的深度更深,这与高应变速率阶段部分马氏体晶粒的碎化有关.通过扫描电镜和透射电镜观察发现,在高应变速率拉伸时晶粒有明显的拉长趋势,并且在应力集中的地方有一些微空洞的存在,应变速率为103 s-1时部分区域有碎化的现象.   相似文献   

4.
研究了TA15钛合金超塑性变形后显微组织的演变及变形条件对超塑性变形行为的影响。结果表明:在变形温度为850~950℃、应变速率为1×10-4~1×10-3s-1超塑性拉伸时,TA15钛合金表现出良好的超塑性变形性能,且在900℃,5.5×10-4s-1变形条件下,延伸率最大为803.3%。在应变速率不变的条件下,随着变形温度的升高,α相晶粒尺寸增大,β相含量增加,晶粒仍保持细小、等轴状态。在变形温度一定时,随着应变速率的降低,α相晶粒尺寸增大,β相含量增加。同时变形程度对显微组织有显著影响,拉伸后不同部位的显微组织均有一定程度的粗化,变形程度越大,晶粒粗化的越明显,并伴有α相到β相的转变。变形过程中,加工硬化与变形软化相互竞争,表现为传统超塑变形的稳态流动特征。  相似文献   

5.
采用铜模吸铸法制备出直径3mm的[Zr0.72+x(Cu0.59Ni0.41)0.28-x]88Al12(x=0.05、0.10)棒状非晶复合材料。考察应变速率对合金压缩力学性能的影响。结果表明,随应变速率的增大,合金的塑性变形区域减小,锯齿流变现象逐渐消失;在相同成分下,随应变速率的增大,弹性模量逐渐升高,塑性应变和抗压强度则逐渐降低,屈服强度和断裂强度也基本呈下降趋势。在x=0.05、应变速率为0.55×10-4s-1时,塑性应变、抗压强度和断裂强度均为最大值,分别为6.77%、1 758MPa和1 629MPa。  相似文献   

6.
采用Gleeble 1500热模拟机对Q345B钢在1×10-4s-1和1×10-3s-1应变速率下的热塑性进行了研究。研究表明:在1×10-4s-1的应变速率下,试样在600~TL℃的温度范围内存在两个脆性区,即高温脆性区,为1 217~TL℃,低温脆性区,为600~930℃;在1×10-3s-1的应变速率下,试样在600~TL℃的温度范围内不存在高温脆性区,仅存在低温脆性区,为600~915℃。影响Q345B钢热塑性的主要因素是S偏析、应变速率、铁素体的析出以及细小的AlN粒子的析出。  相似文献   

7.
研究了Cr17铁素体不锈钢在高温拉伸试验过程中应变速率对合金断面收缩率的影响,并对其发生机制进行了分析。合金在500℃下以不同应变速率(1.43×10-6~1.33s-1)拉伸至断裂,测试断面收缩率,并利用电子探针对晶界成分进行了观察测试。结果表明:应变速率从1.43×10-6 s-1升高至1.43×10-2 s-1,断面收缩率降低,约在1.43×10-2 s-1时达到最低值。然后,随着应变速率增加至1.33s-1,断面收缩率升高。经电子探针测试证实,断面收缩率达到最低值的样品,硫在晶界上偏聚,其他应变速率拉伸的样品没有观察到硫的晶界偏聚。基于多晶金属弹性变形的微观理论,分析这些试验结果,证实了此合金在拉伸试验中具有应变速率脆性的基本特征——临界应变速率。  相似文献   

8.
在300 K及20 K、不同应变速率下对CT20钛合金板材进行单向拉伸,利用扫描电镜、透射电镜等观察拉伸应变组织及断口形貌,揭示了应变速率对CT20钛合金孪生变形行为的影响规律。结果表明:在300 K下,应变速率的提高使CT20钛合金板材的强度提高,延伸率降低;20 K下,应变速率的提高使CT20钛合金板材的强度和延伸率均下降。在300 K、应变速率高于6.67×10-1s-1和20 K、应变速率低于6.67×10-3s-1的条件下,CT20钛合金板材的变形均为滑移和孪生共同作用。20 K下,CT20钛合金拉伸应变速率超过6.67×10-3s-1时,孪生变形受到抑制,材料的延伸率迅速降低。  相似文献   

9.
对不同温度下退火处理后的细晶TC4合金板材进行超塑性拉伸变形,研究该合金在750~850℃,应变速率为3×10-4~1×10-3 s-1条件下的超塑性拉伸变形行为,分析晶粒尺寸、变形温度和β相含量对合金性能的影响。结果表明:退火后的(α+β)型细晶Ti-6Al-4V合金表现出良好的超塑性,并且晶粒越细,最佳超塑性变形温度越低。晶粒直径为2.5μm、β相含量(体积分数)为9.6%的TC4合金在温度为800℃、应变速率为1×10-3 s-1的变形条件下,伸长率最大,达到862%。不同晶粒度合金的应变速率敏感系数m均随变形温度升高先上升后下降,最高达0.61。β晶粒处于α晶粒三叉晶界处,升温或拉伸变形时聚集并沿α晶界长大,形成细长的β晶粒并逐渐变粗大,因此在900℃以上高温下合金的超塑性变形能力降低。  相似文献   

10.
通过分析冷镦钢SCM435在温度为950~1150℃、应变速率为0.1~1s-1范围内发生动态再结晶的热/力模拟试验数据,利用其应变硬化速率θ与流变应力σ的θ-σ曲线,准确确定了其发生动态再结晶的临界应变εc、峰值应变εp、临界应力σc和峰值应力σp,用应力-应变(σ-ε)曲线方法计算SCM435钢的动态再结晶Avrami动力学曲线和时间指数n.结果表明:SCM435钢发生动态再结晶的临界应变与峰值应变的平均比值εc/εp=0.73,动态再结晶Avrami时间指数平均值n=1.91;在温度950~1150℃,应变速率0.1~1s-1范围内,应变速率是SCM435钢的动态再结晶动力学敏感因素,温度对其影响不大;动态再结晶率50%的时间t50与应变速率成反比.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号