首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The mechanical behavior and microstructure evolution during deformation of novel austenitic Cr–Mn–Ni as‐cast steels with varied Ni content were investigated at various temperatures using static tensile tests, optical microscopy, and the magnetic scale for the detection of ferromagnetic phase fraction. To summarize all knowledge about the deformation‐induced processes, the STT and DTT diagrams were developed for Cr–Mn–Ni steels. The diagrams illustrate the different deformation mechanisms depending on temperature and tension load, and quantify the elongation of the deformation mechanisms. The deformation‐induced ε‐ and α' martensite formation and twinning – the TRIP and TWIP effects – occur in the Cr–Mn–Ni steels depending on the chemical composition and temperature. The differences of deformation‐induced processes depend on thermodynamics and are confirmed by thermodynamic calculations. The nucleation threshold of γ → α′ transformation was determined for the investigated Cr–Mn–Ni steels.  相似文献   

2.
The influence of temperature on the deformation behaviour of a Fe‐16.5Cr‐8Mn‐3Ni‐2Si‐1Cu‐0.25N (wt%) austenitic stainless steel alloy was investigated using transmission electron microscopy and X‐ray diffraction measurements. Recrystallized samples were deformed under tension at ?75°C, 20°C, and 200°C and the microstructures were characterized after 5% strain and after testing to failure. Deformation to failure at ?75°C resulted in extensive transformation induced plasticity (TRIP) with over 90% α′‐martensite. The sample deformed to 5% strain at ?75°C shows that the austenite transformed first to ?‐martensite which served to nucleate the α′‐martensite. Transformation induced martensite prohibits localized necking providing total elongation to failure of over 70%. At room temperature, in addition to some TRIP behaviour, the majority of the deformation is accommodated by dislocation slip in the austenite. Some deformation induced twinning (TWIP) was also observed, although mechanical twinning provides only a small contribution to the total deformation at room temperature. Finally, dislocation slip is the dominant deformation mechanism at 200°C with a corresponding decrease in total elongation to failure. These changes in deformation behaviour are related to the temperature dependence on the relative stability of austenite and martensite as well as the changes in stacking fault energy (SFE) as a function of temperature.  相似文献   

3.
The knowledge of the stress‐ and deformation‐induced martensite formation in metastable austenitic steels including the formation temperatures and amounts formed is of considerable importance for the understanding of the transformation induced plasticity. For this purpose a stress‐temperature‐transformation (STT) and a deformation‐temperature‐transformation (DTT) diagram have been developed for the steel X5CrNi 18 10 (1.4301, AISI 304). It is shown that the Md‐temperature for γ→?, ?→α', γ→?→α’ and γ→α’ martensite formation is defined by two stress‐temperature curves which show a different temperature dependence. They specify the beginning and the end of the deformation‐induced martensite formation in the range of uniform elongation. The intersection point defines the corresponding Md‐temperature. The stress difference which results from the stresses for the end and the beginning of the martensite formation shows positive values below the Md‐temperature. It defines the amount of martensite being formed. When the Mdγ→? temperature is reached and the formation of the first deformation‐induced amount of ?‐martensite appears, an anomalous temperature dependence of the maximum uniform elongation starts. The highest values of the maximum uniform elongation are registered for the tested steel in the immediate vicinity of the Mdγ→α' or the Mdγ→?→α' temperature ‐ similar as in other metastable austenitic CrNi steels. At this temperature the highest amount of deformation‐induced ?‐phase exists. The transformation plasticity in the test steel is considerably caused by the deformation‐induced ? and α’ martensite formation. Using the new evaluation method, the increase of plasticity ΔA (TRIP‐effect) and strength ΔR can be quantified.  相似文献   

4.
In‐situ deformation tests have been performed on a steel displaying the transformation‐induced plasticity (TRIP) effect, while monitoring the phase transformation by means of X‐ray diffraction. A tensile stress is applied to 0.4 mm thick samples of this steel with mass contents of 0.26 % Si, 1.5 % Mn, and 1.8 % Al in a transmission geometry for a synchrotron‐radiation beam of 25 μm · 25 μm. On the diffraction patterns every grain appears as a discrete spot. The austenite {200} reflections are analysed during this investigation. The diffraction patterns are treated like a powder pattern for five different η‐angles, with η representing the angle between the tensile direction and the normal direction of the diffracting {200} planes. The results of the analysis show that η = 0° and η = 90° are the preferential orientations for the transformation to martensite. The Ludwigson and Burger model [9] is used to gain more information about the stress dependence of the deformation induced martensite formation. The microdiffraction patterns also reveal the changes in carbon concentration in austenite at each retained austenite fraction.  相似文献   

5.
The mechanical properties of twinning‐induced plasticity (TWIP) steels are often assumed to be solely due to the reduction of the mean free path of glide dislocations resulting from deformation twinning. Other mechanisms may also play an essential role: Mn‐C cluster formation, planar glide, pseudo‐twinning, short range ordering, and dynamic strain ageing. The present contribution offers a critical analysis of the mechanical properties of high‐Mn TWIP steels, especially in terms of Dynamic Strain Aging (DSA) and Static Strain Aging (SSA). The presentation offers new insights into the properties of TWIP steels which were obtained by using new experimental techniques such as in‐situ strain analysis and high sensitivity infrared thermo‐graphic imaging.  相似文献   

6.
High‐strength TRIPLEX light‐weight steels of the generic composition Fe‐xMn‐yAl‐zC contain 18 ‐ 28 % manganese, 9 ‐ 12 % aluminium, and 0.7 ‐ 1.2 % C (in mass %). The microstructure is composed of an austenitic γ‐Fe(Mn, Al, C) solid solution matrix possessing a fine dispersion of nano size κ‐carbides (Fe,Mn)3 AlC1‐x and α‐Fe(Al, Mn) ferrite of varying volume fractions. The calculated Gibbs free energy of the phase transformation γfcc → ?hcp amounts to ΔGγ→? = 1757 J/mol and the stacking fault energy was determined to ΓSF = 110 mJ/m2. This indicates that the austenite is very stable and no strain induced ?‐martensite will be formed. Mechanical twinning is almost inhibited during plastic deformation. The TRIPLEX steels exhibit low density of 6.5 to 7 g/cm3 and superior mechanical properties, such as high strength of 700 to 1100 MPa and total elongations up to 60 % and more. The specific energy absorption achieved at high strain rates of 103 s?1 is about 0.43 J/mm3. TEM investigations revealed clearly that homogeneous shear band formation accompanied by dislocation glide occurred in deformed tensile samples. The dominant deformation mechanism of these steels is shear band induced plasticity ‐SIP effect‐ sustained by the uniform arrangement of nano size κ‐carbides coherent to the austenitic matrix. The high flow stresses and tensile strengths are caused by effective solid solution hardening and superimposed dispersion strengthening.  相似文献   

7.
The martensite start temperature (Ms), the martensite austenite re‐transformation start temperature (As) and the re‐transformation finish temperature (Af) of six high alloyed Cr‐Mn‐Ni steels with varying Ni and Mn contents in the wrought and as‐cast state were studied. The aim of this investigation is the development of the relationships between the Ms, As, Af, T0 temperatures and the chemical composition of a new type of Cr‐Mn‐Ni steels. The investigations show that the Ms, As and Af temperatures decrease with increasing nickel and manganese contents. The Af temperature depends on the amount of martensite. Regression equations for the transformation temperatures are given. The experimental results are based on dilatometer tests and microstructure investigations.  相似文献   

8.
The fraction and microstructure of spontaneous and deformation‐induced martensite in three austenitic stainless steels with different austenite stability have been investigated. Samples were quenched in brine followed by cooling in liquid nitrogen or plastically deformed by uniaxial tensile testing at different initial temperatures. In‐situ ferritescope measurements of the martensite fraction was conducted during tensile testing and complemented with ex‐situ X‐ray diffractometry. The microstructures of quenched and deformed samples were examined using light optical microscopy and electron backscattered diffraction. It was found that annealing twins in austenite are effective nucleation sites for spontaneous α'‐martensite, while deformation‐induced α'‐martensite mainly formed within parallel shear‐bands. The α'‐martensite formed has an orientation relationship near the Kurdjumov‐Sachs (K‐S) relation with the parent austenite phase even at high plastic strains, and adjacent α'‐martensite variants were mainly twin related (<111> 60° or Σ3).  相似文献   

9.
The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.  相似文献   

10.
The deformation mechanisms of high‐alloyed cast austenitic steels with 16% of chromium, 6% of manganese, and a nickel content of 3–9% were investigated by in situ and ex situ scanning electron microscopy. The austenite stability and the stacking fault energy were influenced by variation of the chemical composition as well as by changing deformation temperature (room temperature; RT and 100°C). The study shows that both an increase in austenite stability and stacking fault energy yield a significant change in the deformation mechanisms. Both increase of nickel content and increase in deformation temperature reduce the intensity of the martensitic phase transformation. Thus, the steel with low nickel content shows at RT pronounced formation of α′‐martensite. The steel with the highest nickel content, however, shows pronounced twinning.  相似文献   

11.
The purpose of the present research is to study the martensitic transformation in 22MnB5 steel under thermomechanical conditions by means of dilatation data. To reach this aim, the effects of deformation temperature and strain rate on the martensitic dilatation as well as martensite start temperature (Ms) were investigated. Thermomechanical treatments were performed in a deformation dilatometer including the isothermal deformation of samples in the temperature range of 550–900°C up to the final strain of 0.5 in three strain rates of 0.1, 1, and 10 s?1. Finally, deformation temperatures were divided into two regimes of lower and higher than 800°C. In the former, strain‐induced phase transformations, while in the latter, occurrence of dynamic recovery against mechanical stabilization of austenite influenced martensitic transformation.  相似文献   

12.
Plastic flow during the austenite ? martensite transformation under constant load has been studied in two Fe?Ni alloys (15.4 pct Ni; 32.9 pct Ni). Transformation plasticity, characterized by the typical linear relationship between the transformation strain per cycle and the externally applied stress,i.e., a quasiviscous behavior, was observed for both alloys. The plastic transformation strain on heating was larger than that on cooling for the 15.4 pct Ni alloy and equal to that on cooling for the 32.9 pct Ni alloy. Transformation plasticity results for both alloys are in quantitative agreement with the pseudo-creep theory of Greenwood and Johnson except for the martensite to austenite transformation in the 32.9 pct Ni alloy where the result is an order of magnitude too low. A dislocation model is proposed which considers the superposition of the large shear stresses generated by the martensite plate formation and the externally applied stress. The model quantitatively predicts the stress dependence of the transformation strain per cycle for transformation plasticity.  相似文献   

13.
A comparative analysis of formability was investigated between Fe-Mn-C twinning induced plasticity steel with different Mn contents and interstitial-free steel. Tensile test combing with the morphology of fracture reveals that element Mn is helpful for the forming of inclusion or particles with film or rod shapes inducing the crack initiation and propagation. During stamping process, twinning induced plasticity steel without earing shows better anisotropy than interstitial-free steel because a typical <111> fiber texture forms accompanied by a weaker <100> fiber texture. The difference between the two steels is not evident during Erichsen cone cupping test, but the result of cone cupping test indicates that the twinning induced plasticity steel has superior drawing ability compared with interstitial-free steel. The different performances can be attributed to the different deformation mechanism during cupping test. FLD (forming limit diagram) of tested steels further suggests twinning induced plasticity steel has slightly superior deep drawability but low stretchability than that of IF steel, whose FLD0 value can reach 30%.  相似文献   

14.
Low cost stainless steels where nickel is replaced in a conventional Fe‐Cr‐Ni stainless steel by manganese and nitrogen were studied. In this work, three new steels based on the system (mass %) Fe‐18Cr‐15Mn‐2Ni‐2Mo‐XN were prepared and their microstructure after each treatment was evaluated by optical and scanning electron microscopy, and X‐ray diffraction. A good correlation between texture and microstructure evolution during annealing was established. A randomization of the texture during recrystallization of the austenite was observed. Recrystallization starts at temperatures above 850°C, and after annealing for 0.5 h at 900°C, the austenite is completely recrystallized, reaching the orientation density a value near 1. Precipitation of σ ‐ phase was observed in the samples annealed at temperatures ranging from 700 to 950°C.  相似文献   

15.
Thermo‐mechanical simulation tests were performed on V–Ti–N microalloyed steel under three hot working conditions by using Gleeble‐3800 thermo‐mechanical simulator to study the effects of hot deformation and post‐deformation holding process on the continuous cooling transformation behaviors of overcooled austenite. The continuous cooling transformation diagrams (CCT diagrams) were determined by thermal dilation method and metallographic method. The effects of the hot deformation, post‐deformation holding, and cooling rate on the microstructure evolution were analyzed. The results show that deformation promotes ferrite and pearlite transformation. In addition, deformation leads to an increase in bainite start temperature, which becomes more markedly with the increase in cooling rate. The post‐deformation holding process is much favorable to promote carbonitride precipitation of the microalloying elements, which contributes to ferrite nucleation and smaller austenite grains. As a result, an increase in ferrite quantity and a decrease in ferrite grain size can be observed. And further more, the post‐deformation holding process reduces the effect of hot deformation on the bainite start temperature.  相似文献   

16.
The high-temperature austenite phase of a high-interstitial Mn- and Ni-free stainless steel was stabilized at room temperature by the full dissolution of precipitates after solution annealing at 1523 K (1250 °C). The austenitic steel was subsequently tensile-tested in the temperature range of 298 K to 503 K (25 °C to 230 °C). Tensile elongation progressively enhanced at higher tensile test temperatures and reached 79 pct at 503 K (230 °C). The enhancement at higher temperatures of tensile ductility was attributed to the increased mechanical stability of austenite and the delayed formation of deformation-induced martensite. Microstructural examinations after tensile deformation at 433 K (160 °C) and 503 K (230 °C) revealed the presence of a high density of planar glide features, most noticeably deformation twins. Furthermore, the deformation twin to deformation-induced martensite transformation was observed at these temperatures. The results confirm that the high tensile ductility of conventional Fe-Cr-Ni and Fe-Cr-Ni-Mn austenitic stainless steels may be similarly reproduced in Ni- and Mn-free high-interstitial stainless steels solution annealed at sufficiently high temperatures. The tensile ductility of the alloy was found to deteriorate with decarburization and denitriding processes during heat treatment which contributed to the formation of martensite in an outermost rim of tensile specimens.  相似文献   

17.
Modern steel developments often use additional deformation mechanisms like the deformation induced martensitic transformation (TRIP‐effect) and mechanical twinning (TWIP‐effect) to enhance elongation and strength. Three high‐alloyed cast CrMnNi‐steels with different austenite stabilities were examined. Dependent on the austenite stability, TRIP‐effect and TWIP‐effect were found. A low austenite stability causes a distinctive formation of deformation induced α'‐martensite and therefore a strong strain hardening. The increase of strain rate leads to an increase in yield strength and flow stress, but also to a counteractive adiabatic heating of the specimen. Dependent on the degree of deformation, low austenite stabilities and high strain rates lead to excellent values in specific energy absorption.  相似文献   

18.
High-strength steels have been widely applied to automotive chassis parts.In order to form complex shapes,high hole expansion rates and high formability are required.Dual phase (DP) steel has a good formability,but a poor hole expansion rate.In this circumstance,another kind of steel which has a microstructure of ferrite-bainite,rather than ferrite-martensite,has been found to be an alternative solution.It is called FB steel.This steel with Si,C and Mn additions are applied in this study.A two-step cooling process is used to get the desired F+ B microstructures.Continuous cooling transformation (CCT) diagrams are made with deformation and without deformation,and starting times and temperatures of the phase transformations of interest are obtained.It is shown that Si,C and Mn contents in the steel strongly affect the shapes and positions of the CCT diagrams,as well as the final microstructures of FB steel.An increase of the Si content can promote the formation of ferrite and move the CCT diagram toward the left.However,when Si content is too high,when comparing to carbon and manganese contents,the formation of bainite will be retarded because of the formation of more ferrite.It increases the amount of C in a solid solution in the untransformed austenite and promotes the formation of pearlite.C and Mn can inhibit the formation of ferrite and retard the accumulation of C in austenite.Therefore,the appropriate balance of C,Si and Mn contents in steels will be able to help in obtaining the desired microstructure.  相似文献   

19.
A new metastable Ni-free duplex stainless steel has been designed with superior plasticity by optimizing austenite stability using thermodynamic calculations of stacking fault energy and with reference to literature findings. Several characterization methods comprising optical microscopy, magnetic phase measurements, X-ray diffraction (XRD) and electron backscattered diffraction were employed to study the plastic deformation behavior and to identify the operating plasticity mechanisms. The results obtained show that the newly designed duplex alloy exhibits some extraordinary mechanical properties, including an ultimate tensile strength of ~900 MPa and elongation to fracture of ~94 pct due to the synergistic effects of transformation-induced plasticity and twinning-induced plasticity. The deformation mechanism of austenite is complex and includes deformation banding, strain-induced martensite formation, and deformation-induced twinning, while the ferrite phase mainly deforms by dislocation slip. Texture analysis indicates that the Copper and Rotated Brass textures in austenite (FCC phase) and {001}〈110〉 texture in ferrite and martensite (BCC phases) are the main active components during tensile deformation. The predominance of these components is logically related to the strain-induced martensite and/or twin formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号