首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 141 毫秒
1.
38CrMoAl钢120t BOF-LF-RH-CC冶炼过程钢中夹杂物主要以CaS和A12O3为主,并且随着精炼的进行,夹杂物中CaS含量逐渐升高,AI2O3含量逐渐降低。通过钙处理试验,得出采用钙处理工艺,不仅不能有效变性 38CrMoAl钢中夹杂物,反而会产生更多CaS夹杂物,最终引发由CaS产生的水口结瘤。工业试验结果表明,在RH原工艺基础上取消钙处理工艺,将LF精炼结束钢水硫含量降低至0.001% -0.002%,可以很好的改善钢水浇铸性  相似文献   

2.
为了进一步研究20CrMo合金钢在生产过程中夹杂物的演变机理,实现对钢中非金属夹杂物的合理控制,保证生产顺行,提高产品力学性能,针对“BOF→LF→RH→钙处理→连铸→热轧”工序生产20CrMo合金钢全流程中非金属夹杂物的演变规律进行了研究。在LF精炼及RH精炼加钙前钢中非金属夹杂物含有70%以上的Al2O3。钙处理后,由于过量的钙加入到钢液中,夹杂物中CaS质量分数迅速增加至59%,Al2O3质量分数降低至21%。在连铸过程中由于二次氧化的发生,夹杂物转变为CaO?Al2O3,其中含有50%的Al2O3、39%的CaO和10%的CaS,并且夹杂物平均尺寸增加。在钢的冷却和凝固过程中,CaO质量分数降低至5%,CaS质量分数增加至57%,钢中夹杂物转变为Al2O3?CaO?CaS的复合夹杂物,同时含有少量大尺寸的CaO?Al2O3夹杂物。在钢的轧制过程中,夹杂物中CaO含量进一步降低,CaS含量增加,夹杂物平均尺寸增加,形成了CaO?Al2O3与CaS黏结型的复合夹杂物与Al2O3?CaS复合夹杂物。对CaO-Al2O3与CaS黏结型的复合夹杂物的形成原因进行了讨论。   相似文献   

3.
通过对LF前-LF后-中间包-连铸工艺生产40Cr钢各环节系统取样,以及电子显微镜对夹杂物的形貌、尺寸及组成的分析,发现40Cr铸坯中含有大量CaO(CaS)-Al2O3-MgO类复合夹杂.采用Factsage计算得到的CaO-CaS-Al2O3三元相图对钙处理后CaO(CaS)-Al2O3夹杂形成过程进行了理论计算;并对实际发现的CaO(CaS)-Al2O3-MgO类复合夹杂物的面扫描分布进行描边处理,探讨了该类夹杂物的组成和形成过程.经Factsage理论计算发现,CaO-CaS-Al2O3三元相图中液相区各成分质量分数为CaO 32%~58%、CaS 0%~5%以及Al2O342%~65%,钙处理后CaO含量有逐渐增加,CaS含量有逐渐减小趋势.结合夹杂物的面扫描分布发现,CaO(CaS)-Al2O3-MgO类复合夹杂物的组成为xCaO·yAl2O3+mMgO·nAl2O3+Al2O3+CaS,钙处理后Ca能够使Al2O3变性为CaO-Al2O3,但同时夹杂物中也有很高的CaS成分,随着钙处理的充分进行,CaS将由内及外向CaO-Al2O3逐渐转变.   相似文献   

4.
铝脱氧齿轮钢中易生成大量的高熔点Al2O3类夹杂物,容易导致水口结瘤及钢材性能恶化,目前较常采用钙处理将钢中高熔点的Al2O3类夹杂物改性为低熔点的钙铝酸盐类夹杂物。合理的钙处理可以减轻水口结瘤并提高连铸过程钢液的可浇性,工业试验研究了喂钙前钢液中T.Ca含量、喂钙速度、喂钙量、净空高度及渣厚等参数对齿轮钢中钙收得率的影响,并在1.5 m·s?1的喂钙速度条件下研究了不同喂钙量对钙处理过程中齿轮钢中非金属夹杂物改性的影响。研究结果表明,当喂钙前钢液中T.Ca的质量分数小于10×10?6,喂钙速度为1.5 m·s?1,适当降低喂钙量和净空高度和渣厚,钢液中钙收得率均高于20%。当钢液中T.Ca的质量分数高于17×10?6时,钢中生成大量高熔点CaS型夹杂物,三元相图中夹杂物的平均质量分数远离液相区。随着齿轮钢中T.Ca含量的增加,夹杂物的平均尺寸和数密度逐渐增加。热力学计算结果与工业试验钙处理对钢中非金属夹杂物改性效果具有较好的一致性。   相似文献   

5.
李文英  吴志敏 《特殊钢》2013,34(5):38-40
含钛低碳钢(/%:0.05~0.10C、0.70~0.95Si、1.45~1.65Mn、≤0.025P、≤0.025S、0.10~0.20Ti)的生产流程为高炉铁水-35 t LD-LF-150 mm×150 mm连铸工艺。用少量铝脱氧的含钛低碳钢,由于LF精炼渣(/%:55~59CaO、21.9~26.5SiO2、9.4~14.3Al2O3)中Al2O3含量较高,使LF精炼过程中钢水铝含量增加和20 t中间包水口结瘤,影响连铸顺行。在热力学计算的基础上,优化了冶炼工艺,转炉出钢不加铝锰铁,使用低铝硅铁代替普通硅铁,精炼渣不加高铝矾土,优化精炼渣成分(/%:56.1~65.6CaO、19.3~27.2SiO2、5.1~9.1Al2O3),钢水中Al含量由0.007%~0.018%降至0.001%~0.009%,有效减少中间包水口结瘤的发生。连浇炉数由原来的3~6炉提高到9~16炉。  相似文献   

6.
GCr15钢的生产流程为120 t BOF-LF-RH-CC工艺。BOF出钢加200 kg铝块进行强脱氧,同时LF过程控制Al含量至0.030%~0.045%,LF结束夹杂物主要为MgO·Al2O3,RH真空后MgO·Al2O3夹杂物被去除,钢水中夹杂物以钙铝酸盐为主,但是连铸浇铸过程MgO·Al2O3夹杂物又会重新生成。因为LF精炼过程Al-MgO和C-MgO反应的存在,高碳铝脱氧GCr15轴承钢LF精炼结束更容易获得MgO·Al2O3夹杂物,并促进中间包钢水MgO·Al2O3夹杂物重新生成。当BOF出钢仅加40 kg铝块进行预脱氧,LF结束钢水MgO·Al2O3夹杂物数量显著降低,同时中间包钢水中MgO·Al2O3夹杂物不再重新生成。此外,将低钛低铝硅铁由出钢过程改为LF过程加入,也可以有效控制钢水中MgO·Al2O3夹杂物数量。   相似文献   

7.
利用扫描电镜对80 t LF钢液喂钙处理前后的冷镦钢SWRCH22A中夹杂物形态和组成的变化进行了分析和研究,对钙处理钢中夹杂物的变性进行了热力学计算。研究表明,SWRCH22A钢液钙处理后夹杂物中的Mn被Ca置换,中间包内钢中Al2O3夹杂变性生成低熔点铝酸钙夹杂12CaO·7Al2O3;如要钢液钙处理生成易上浮排除的液态12CaO·7Al2O3夹杂的必要条件是[Al]T2/[Ca]T3≤10.58×104。  相似文献   

8.
铝镇静钢浇铸过程存在的水口结瘤是钢铁企业中普遍存在的难题,结合生产实践中的水口结瘤现象,铝镇静钢水口结瘤按发生位置可分为钢包水口结瘤、塞棒头结瘤、上水口结瘤和浸入式水口结瘤。中等尺寸的夹杂物对水口堵塞影响较大;低拉速也增加水口结瘤的几率;不恰当的钙处理会加剧水口结瘤速度。为防止水口结瘤,需要较高的钢水洁净度、防止浇铸二次氧化,钙处理时要求w(Ca)/w(Al夹杂)≥1.2。采取以上措施后,水口结瘤率平均由20.6%降至4.52%,平均连浇炉数平均由8.2炉提高到10.3炉。  相似文献   

9.
刘坤龙  吕明  宋保民  张朝晖  王建江  方明 《钢铁》2022,57(12):79-87
 基于某钢厂Q355B铝镇静钢冶炼过程生成高熔点夹杂物,出现探伤不合格的问题,通过全流程取样分析钢中夹杂物的演变规律,发现原工艺LF精炼过程钙处理前夹杂物主要为低CaO含量的CaO-MgO-Al2O3系夹杂物,Al2O3质量分数约为77%。钙处理后,钢液中CaO-MgO-Al2O3系夹杂物向液相区左侧CaO含量高的区域靠近,Al2O3质量分数减少至32%;同时,CaS在钙铝酸盐表面异质形核,出现CaS-CaO-Al2O3系夹杂物,夹杂物中CaS质量分数增加至23%。应用热力学平衡模型计算钙处理钢液中S-Ca、Al-Ca及Al-S反应平衡曲线。结果表明,在1 873 K下生成C3A、C12A7、CAL等低熔点钙铝酸盐类夹杂物,钢液内w([Al])和w([Ca])的关系应分别满足 w([Al])2/w([Ca])3≤7.83×103、2.36×105、1.18×107,w([Al])和w([S])的关系应分别满足 w([S])3×w([Al])2≤7.79×10-12、8.36×10-11、8.14×10-10;当钢液中w([Al])为0.007 5%时,w([Ca])和w([S])分别控制在0.000 62%~0.001 9%、0.001 6%~0.005 1%范围内有利于生成理想液态产物C12A7。结合夹杂物分析及热力学计算,优化调整了脱氧、喂线等生产工艺,将铝块加入量由0.8 kg/t降低至0.7 kg/t,喂硅钙线量由300 m/炉降低至200 m/炉,并进行全流程取样分析夹杂物变化。发现钙处理后,CaS-CaO-Al2O3系夹杂物中,CaS质量分数降低至约5%,夹杂物分布在低熔点液相区域附近,铸坯中钢液w([Ca])由0.003 1%降低至0.001 5%~0.002 2%;最终夹杂物体系为(CaS)-CaO-(MgO)-Al2O3低熔点复合相夹杂物,防止了高熔点钙铝酸盐类夹杂物及CaS类夹杂物的产生,提高了铸坯质量。  相似文献   

10.
为了研究SWRCH45K冷镦钢在精炼和连铸过程中夹杂物形成和变化规律,在相关工序取钢样和渣样,采用SEM-EDS检测了钢中夹杂物形貌和成分,并结合夹杂物自动分析仪统计了夹杂物数量和尺寸分布。结果表明,LF精炼达到了较好的脱硫和脱氧效果,但钙处理后软吹流量过大造成钢水二次氧化,钢中夹杂物、氮和氧含量有所升高。LF进站时以Al2O3系和MgO-Al2O3系夹杂为主,在精炼渣的作用下,夹杂物转变为CaO-Al2O3系和CaO-MgO-Al2O3系。钙处理后,夹杂物中MgO含量明显降低,CaO含量升高,到中间包工序时钢中夹杂物已基本处于低熔点区。铸坯中夹杂物数量较少,主要为Al2O3-CaS、CaO-Al2O3-CaS和MgO-Al2O3-CaS夹杂物。  相似文献   

11.
 大型夹杂物对钢材的加工性能、力学性能和耐腐蚀性能等产生十分有害的影响。用电解萃取法研究了钙处理钢中大型球状/棒状夹杂物的性质,通过对大型球状/棒状夹杂物形貌的扫描电镜观察和元素成分能谱分析,指出钢中的大型球状/棒状夹杂起源于呈团簇状的铝脱氧产物Al2O3。大量小颗粒Al2O3夹杂组成尺寸较大的夹杂团簇,在钢包内复杂流场作用下形成球状或棒状。钢液在钙处理过程中,变性充分的夹杂物形成了低熔点的铝酸钙,在钢液凝固后形成致密的球状夹杂物;变性不充分的夹杂外形仍然保留Al2O3夹杂颗粒形貌。钙处理使Al2O3夹杂变性所需的w([Ca])/w([Al])主要受钢液中硫质量分数影响。铝酸钙对钢液中的硫有较强的吸收溶解能力,在浇铸过程中,随着钢液温度下降,铝酸钙吸收的硫以CaS夹杂形式从基体中饱和析出。  相似文献   

12.
王野光  刘承军  邱吉雨 《钢铁》2022,57(4):52-57
稀土能够显著提升钢材的性能,是高品质钢中常见的合金元素之一.然而,由于稀土与O、S等杂质元素之间存在极强的亲和力,加入钢中后形成的高熔点、大尺寸夹杂物对浇铸工艺的顺行及产品质量均有严重危害.为了探讨不同铝含量对稀土耐热钢中非金属夹杂物类型及尺寸分布的影响,在利用优化的热力学模型进行模拟计算的基础上,设计并开展了高温试验...  相似文献   

13.
以SWRCHl8A钢为例介绍了湘钢二炼钢厂含铝冷镦钢的生产工艺。通过对铁水预处理、转炉冶炼终点控制、吹氩站成分调整、钢包炉钙处理、连铸保护浇铸和防止水口堵塞等工艺过程进行研究和技术攻关,摸索出了较为成熟的含铝冷镦钢的生产工艺。  相似文献   

14.
王昆鹏  王郢  徐建飞  陈廷军  谢伟  姜敏 《钢铁》2022,57(6):42-49
 研究了轴承钢LF精炼和RH真空处理过程各类夹杂物的成分、种类和数量变化,并结合热力学模拟计算了夹杂物与钢液的界面参数,并对试验结果进行分析讨论。夹杂物分析结果表明,精炼25 min后,脱氧产物Al2O3消失,钢中夹杂物以纯尖晶石、含少量CaO的尖晶石、CaO·2Al2O3和CaO·Al2O3为主。继续精炼65 min至LF精炼结束,钢中夹杂物仍以纯尖晶石、含少量CaO的尖晶石、CaO·2Al2O3和CaO·Al2O3为主。RH真空处理25 min后,钢中夹杂物总数量较LF精炼结束降低75%,其中,纯尖晶石和含少量CaO的尖晶石去除率分别为99.5%和93.2%,CaO·2Al2O3去除率为67%。RH破空后钢中夹杂物以液态钙铝酸盐CaO·Al2O3和12CaO·7Al2O3为主。精炼过程尖晶石类夹杂物尺寸集中在10 μm以下,尺寸大于20 μm夹杂物主要为处于液相区的钙铝酸盐,这些钙铝酸盐在LF精炼前期就已经存在。与钢水接触角大于90°的固态夹杂物纯尖晶石、含少量CaO的尖晶石和CaO·2Al2O3在RH真空处理过程容易去除,与钢水接触角小于90°的液态夹杂物CaO·Al2O3和12CaO·7Al2O3不易去除。因此,将LF精炼结束的夹杂物控制为固态夹杂物有利于RH真空处理过程夹杂物的高效去除。热力学计算结果表明,当钢中w(T[O])为0.001 0%、w([Mg])大于0.000 18%时,脱氧产物Al2O3热力学上就不能稳定存在。铝脱氧、高碱度渣精炼条件下很难稳定地获得固态Al2O3夹杂物。为获得完全固态尖晶石或高熔点钙铝酸盐夹杂物,钢中w([Ca])需控制在0.000 1%以内。钢中w([Ca])大于0.000 2%,就具备生成液态夹杂物的热力学条件。  相似文献   

15.
 针对攀钢提钒炼钢厂新投产的方圆坯连铸机浇铸铝镇静钢时发生水口堵塞、连浇炉数较低的问题,采取了提高钢水出钢终点w([C])、优化脱氧工艺、促进夹杂物上浮,加强脱钢水扩散脱氧等措施,工业应用表明:中间包钢液中w([Ca])/w([Al])控制在0.05~0.15,w([Ca])/w([S])控制在0.15左右,钢水可浇性得到有效改善,水口堵塞现象得以缓解,单中间包连浇炉数由小于等于5炉提高到8炉。  相似文献   

16.
王康豪  姜敏  李凯轮  王新华 《钢铁》2022,57(10):64-72
 为研究GCr15轴承钢中夹杂物的演变规律,对某钢厂BOF-LF-RH-CC工艺流程生产的GCr15轴承钢进行了全流程取样,并利用ASPEX扫描电镜和热力学计算对各工序钢中夹杂物的演变进行了系统的分析。研究表明,在LF精炼初期,钢中夹杂物主要为高Al2O3(w(Al2O3)=84%)的MgO-Al2O3和CaO-MgO-Al2O3夹杂物;LF精炼结束时,MgO-Al2O3和CaO-MgO-Al2O3夹杂物的数量所占比例分别为74%和26%,此时钢液中夹杂物尺寸主要为1~6 μm,数量所占比例为87%。LF-RH精炼期间,夹杂物总数量由LF精炼结束时的198 个/(20 mm2)降低至RH破空后的103 个/(20 mm2),降幅为48%,其中MgO-Al2O3夹杂物主要在LF精炼期间生成,然后在RH精炼时基本被去除,具体表现为,其数量由LF进站时的88 个/(20 mm2)增加至LF出站时的139 个/(20 mm2),在RH软吹结束时降低为4 个/(20 mm2);CaO-MgO-Al2O3夹杂物主要在RH精炼期间生成,其数量由LF出站时的49个/(20 mm2)增加至RH软吹结束时的108 个/(20 mm2),这表明RH真空精炼对夹杂物去除效果较好。热力学计算结果表明,二次精炼过程中钢中Als、Mg含量处于MgO-Al2O3夹杂物优势区内,这表明MgO-Al2O3夹杂物更易生成;当钢中w([Mg])为0.000 3%时,w([Ca])大于0.000 25%,满足MgO-Al2O3夹杂物转变为CaO-MgO-Al2O3夹杂物的热力学条件,而且当w([Als])为0.022%时,w([Ca])控制为0.000 25%~0.007 00%时更有利于生成液态化的钙铝酸盐。试验过程钢中w([Ca])约为0.000 1%~0.000 4%,因此夹杂物更多地转变为CaO-MgO-Al2O3夹杂物。  相似文献   

17.
为防止轴承钢产生大型球状夹杂,所以对轴承对钢中的钙含量有严格的控制要求。为解决轴承钢连铸过程的水口堵塞问题,不少钢厂采用真空后喂硅钡线对钢水进行夹杂物变性处理。但通过两种工艺条件下(有硅钡和无硅钡处理)形成的大型球状夹杂的电镜分析发现,硅钡处理对大型球状夹杂的形成有促进作用,在喂线后的软吹过程中钡夹杂上浮并不充分。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号