首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
 In order to investigate the effect of initial microstructure on warm deformation behavior, some specimens of 45 steel were annealed and some quenched. Then the specimens were isothermally compressed on a Gleeble 3500 machine. The deformation temperature range was 550 to 700 ℃ and the strain rate range was 0.001 to 0.1 s-1. An optical microscope (OM) and a transmission electron microscope (TEM) were used to study the microstructures. The results show that the microstructure of annealed specimens is ferrite and pearlite and that of quenched specimens is martensite. The flow stress of quenched specimens is higher than that of annealed ones at 550 ℃ when strain rates are greater than 0.001 s-1. However, at 600 to 700 ℃ and strain rate of 0.001 s-1, the whole flow curves of quenched specimens are below that of annealed ones. Under the rest conditions, the flow stress of quenched specimens is higher at the beginning of compression and then the opposite is true after the strain is greater than a critical value. The microstructure examination proves that the tempering and dynamic recrystallization easily occur in the specimens with martensite during warm compression, which results in the above phenomena.  相似文献   

2.
  The hot deformation characteristics of ductile iron are studied in the temperature range of 973 to 1273K and strain rate range of 0001 to 1 s-1 by using hot compression tests. Processing maps for hot working are developed on the basis of the variations of efficiency of power dissipation with temperature and strain rate. The results reveal that the flow stress of ductile iron is sensitive to strain rate. In the processing map under strain of 07, a domain is centered at 1273 K and 1 s-1, and the maximum efficiency is more than 36%. According to the maps, the zone with the temperature range of 1173 to 1273 K and strain rate range of 01 to 1 s-1 may be considered as the optimum region for hot working.  相似文献   

3.
In this paper,a new electromagnetic continuous casting process to prepare clad slab is presented.The influence of level direct current electromagnetic field on temperature and flow fields of the melt during the fabrication of clad slab were numerically studied by the engineering software ANSYS and FLUENT.The results indicated that when the magnetic flux density(B)was 0.15 T,the impact velocity and distance of the flow to the narrow face and underside of the dividing plate decreased remarkably.So the flow impact to the liquid pool was reduced.At the same time,the high temperature zone of the melt moved away from the narrow face and the dividing plate,and distributed more uniformly.The wider semi-solid arca next to the dividing plate was useful for 3003 and 4004 aluminum alloys to bond.  相似文献   

4.
 The reduction-degree of the sample increases and the utilization ratio of gas decreases when the reaction lasts longer time, which indicates that the reaction is faster at the beginning of reduction, while it becomes slower in subsequent process. The higher the reaction temperature, the higher the utilization ratio of gas and the reduction-degree are, but the difference of utilization ratio among the different temperatures becomes smaller with time. The utilization ratio of gas can reach about 8% and the reduction-degree is 80% for 20 min reduction at 850 ℃, indicating that the reduction reaction by CO is very fast at high temperature. The higher the reaction temperature, the higher the apparent reaction rate constant is, but the difference of apparent reaction rate constant among the different temperatures becomes bigger. The apparent activation energy is about 5911 kJ/mol in the fluidized bed experiment. The increase of reduction-degree with gas velocity shows quite good linearity, indicating that at high temperature even higher velocity of reducing gas can be used to improve the productivity of reactor when CO is used as reducing gas. With the increase of charge height, the metallization ratio and the reduction-degree decrease, but the utilization ratio of gas increases.  相似文献   

5.
 An integrated mathematical model is proposed to predict the velocity field and strain distribution during multi-pass plate hot rolling. This model is a part of the mixed analytical-numerical method (ANM) aiming at prediction of deformation variables, temperature and microstructure evolution for plate hot rolling. First a velocity field with undetermined coefficients is developed according to the principle of volume constancy and characteristics of metal flow during rolling, and then it is solved by minimizing the total energy consumption rate. Meanwhile a thermal model coupling with the plastic deformation is exploited through series function solution to determine temperature distribution and calculate the flow stress. After that, strain rate field is calculated through geometric equations and strain field is derived by means of difference method. This model is employed in simulation of an industrial seven-pass plate hot rolling process. The velocity field result and strain field result are in good agreement with that from FEM simulation. Furthermore, the rolling force and temperature agree well with the measured ones. The comparisons verify the validity of the presented method. The calculation of temperature, strain and strain rate are helpful in predicting microstructure. Above all, the greatest advantage of the presented method is the high efficiency, it only takes 12 s to simulate a seven-pass schedule, so it is more efficient than other numerical methods such as FEM.  相似文献   

6.
The superplastic behavior of the AZ61 magnesium alloy sheet, processed by one-step hot extrusion and possessing medium grain sizes of ∼12 μm, has been investigated over the temperature range of 523 to 673 K. The highest superplastic elongation of 920 pct was obtained at 623 K and a deformation rate of 1×10−4 s−1. In the lower and higher strain rate regimes, with apparent m values of ∼0.45 and ∼0.25, respectively, grain-boundary sliding (GBS) and dislocation creep appeared to dominate the deformation, consistent with the scanning electron microscopy (SEM) examination. The SEM examination also revealed that individual GBS started to operate from the very initial deformation stage in the strain rate range with m∼0.45, which was attributed to the relatively high fraction (88 pct) of high-angle boundaries. The analyses of the superplastic data over 523 to 673 K and 5×10−5 to 1×10−3 s−1 revealed a true stress exponent of ∼2, and the activation energy was close to that for grain-boundary and lattice diffusion of magnesium at 523 to 573 K and 573 to 673 K, respectively. The transition temperature of activation energy is ∼573 K, which is attributed to the change in the dominant diffusion process from grain-boundary diffusion to lattice diffusion. It is demonstrated that the effective diffusion coefficient is a valid parameter to characterize the superplastic behavior and the dominant diffusion process.  相似文献   

7.
  Multilayer of laser direct metal deposition (DMD) was prepared by depositing a gas atomized pre alloyed powder with a composition close to Inconel 718 alloy on Inconel 718 high temperature alloy substrate. The effects of the DMD parameters on the build up rate and the structure of the deposited layer were studied. The laser DMD sample was further processed by a solution treatment. The microstructure and property of the laser DMD zone before and after heat treatment were investigated as well. The results show that the laser parameters of actual laser power of 650 W, scanning speed of 58 mm/s, beam diameter of 1 mm, powder feed rate of 645 g/min, with a corresponding specific energy of 90-130 J/mm2, can be recommended as optimum parameters for high build up rate of Inconel 718 alloy. Under the condition of optimized parameters, a directional solidification microstructure was obtained and the average distance between the columnar crystals was 5-10 μm. The microcomposition segregation was found between the columnar crystal trunk and columnar crystal. The elements of Nb, Mo, Ti concentrated in the columnar crystal trunk. After the heat treatment, the segregation was greatly minimized, and the segregation ratios were close to 1. The hardness of the laser deposited layer did not show obvious difference along the height of the layer either for the as deposited layer or for the heat treated layer. However, the microhardness of the laser DMD zone after heat treatment was obviously higher than that after the as deposited treatment. During the heat treatment process, some Nb and Mo rich phases precipitated and strengthened DMD layer.  相似文献   

8.
Blast furnace(BF)slag is a by-product of the ironmaking process and could be utilized to manufacture slag fiber by adding iron ore tailing.The crystallization behavior of the modified BF slag is significant to the fibrosis process.To investigate the influence of basicity on the crystallization behavior,BF slag was modified by adding iron ore tailing at room temperature and melted at 1 500°C.FactSage simulation,X-ray diffraction,scanning electron microscopy backscattered electron imaging coupled to an energy dispersive spectrometer,and hot thermocouple technique analysis were performed to explore the crystallization behavior of the modified BF slag during the cooling process.It was found that the initial crystallization temperature increased with the increase in basicity.Melilite,anorthite,clinopyroxene,and wollastonite could be generated during the cooling process as basicity ranged from 0.7 to 0.9.Spinel could be found as one of the phases;however,wollastonite disappeared under a basicity of 1.0.The initial crystallization temperature was controlled by the crystallization of melilite during the cooling process when the basicity of the modified BF slag ranged from 0.7 to 1.0.Moreover,the cooling rate could also influence the crystallization of the modified BF slag.  相似文献   

9.
 The internal recycling process of BOF slag which is one of the huge solid wastes from iron and steel industry was emphasized. Based on the four scenarios of different internal recycling strategies for BOF slag, life cycle assessment (LCA) as a valuable tool for industrial solid waste management was applied to analyze the contribution to reducing environmental impacts and resources burdens for each scenario. The global warming potential (GWP) results of the four scenarios show that the scenario which performs best in carbon reduction cuts off 14.2% of GWP impacts of the worst scenario. The results of this study show that the optimized internal recycling process of BOF slag can improve the environmental performance of crude steel. It is important to assess and choose an appropriate strategy to recycle BOF slag from LCA perspective to reduce the environmental impacts and resource burdens as much as possible.  相似文献   

10.
Under carefully chosen conditions, solidification theory may be applied to solid-state transformations, and this has been done here for composition-invariant diffusion transformations. The predictions of the modeling are compared with isovelocity experiments in two iron systems, Fe-7.29 wt pct Cr and Fe-3.1 wt pct Ni. The ferrite to austenite phase transformation is used to demonstrate that stabilization of a planar transformation front at absolute stability is the natural lower velocity limit for a composition-invariant (massive) transformation. The results of the model, which includes nonequilibrium effects, clearly show that steady-state plane-front growth leading to composition invariance can be obtained at various temperatures depending on the growth velocity. In the lower velocity range, at the limit of absolute stability (of the order of 10 μm/s in the systems studied), the transformation interface moves under conditions of local equilibrium, and the temperature corresponds to the lower solvus temperature. At higher velocity (of the order of the interface diffusion rate, which in these systems is of the order of cm/s), the transformation is predicted to proceed at temperatures close to T 0. At even higher rates, atom attachment kinetic undercooling will decrease the transformation temperature with respect to T 0. In some cases, this temperature might even drop below the lower solvus. This article is based on a presentation made at the symposium entitled “The Mechanisms of the Massive Transformation,” a part of the Fall 2000 TMS Meeting held October 16–19, 2000, in St. Louis, Missouri, under the auspices of the ASM Phase Transformations Committee.  相似文献   

11.
 为了研究Inconel718高温合金电渣重熔过程中渣系各组元对合金中易氧化元素铝、钛的影响,以五元渣系CaF2-CaO-Al2O3-MgO-TiO2为基,通过分子与离子共存理论,根据渣金界面中各组元的平衡反应和物质守恒,建立了Inconel718高温合金电渣重熔过程中渣金界面铝、钛元素氧化反应的热力学模型。通过分析该模型并对模型结果进行渣金平衡验证试验,验证了模型的有效性。研究结果表明,渣中CaF2、MgO质量分数的变化对合金中铝、钛元素的影响很小;渣中Al2O3有烧钛增铝的作用,TiO2有烧铝增钛的作用,CaO能够抑制铝元素的烧损;能够有效减少Inconel718高温合金电渣重熔过程中铝、钛元素烧损的渣系配比为CaO质量分数为20%~25%、TiO2质量分数为4%~6%、MgO质量分数为1%~4%、CaF2质量分数为50%~60%、Al2O3质量分数为15%~20%。  相似文献   

12.
This paper summarizes the corrosion behavior of Inconel 718 alloy,which is used in the oil and gas fields,including its uniform corrosion,pitting,intergranular corrosion,galvanic corrosion,stress corrosion,and hydrogen embrittlement.It also analyzes the main reasons for the good corrosion resistance of Inconel 718 alloy.This paper focuses on the effects of the heat-treatment process on corrosive behavior and provides guidelines for reasonable heat treatments in security service environments.Finally,this paper recommends further studies and applications of Inconel 718 in corrosion environments with high-temperature,high-pressure,and wet H2S.  相似文献   

13.
 为了降低Inconel 718合金的生产成本,设计了常规方案和经济方案两种试验方案:常规方案用纯金属冶炼718合金,经济方案用铌铁合金替代金属铌、用铬铁合金替代金属铬冶炼718合金。运用两种方案在真空感应炉内分别冶炼了一炉718合金并浇铸成锭,将两支铸锭按照相同的工艺参数进行扩散退火、轧制成材及热处理,随后取样进行力学性能及金相组织分析。试验结果表明,用两种方案冶炼的718合金均能满足国内优质Inconel 718合金的技术标准,且用铌铁合金替代金属铌、用铬铁合金替代金属铬冶炼的Inconel 718合金可降低18%的原料成本。  相似文献   

14.
Structural stability of the Inconel 718 is reported to enhance at temperatures above 650°C, with increase in Al/Ti and Al + Ti/Nb atomic ratios. However, no report is available on low cycle fatigue behavior of the modified compositions of the Inconel 718. The present investigation deals with comparative study of LCF behavior of the conventional and modified 718 with Al + Ti/Nb ratios of 0.294 and 0.459 respectively at 650°C. It was observed that fatigue life of the modified alloy, in terms of Coffin-Manson relationship was higher than that of the conventional one.  相似文献   

15.
为满足锆合金热挤压时的润滑与防护需求,试制了一种锆合金热挤压用防护润滑剂,主要成分包括有机硅树脂、低软化点玻璃粉、氧化铝粉、二硫化钼、石墨粉、滑石粉、云母粉等。实验温度为700~800 ℃时,采用圆环压缩法测得涂覆有润滑剂的Zr-4合金摩擦因子为0.19~0.25,润滑效果良好。将有润滑剂防护的锆合金分别加热至700、800和900 ℃并保温1 h,未发生明显氧化,热防护性能良好。测定了有、无润滑剂条件下Zr-4合金和H13模具钢的界面接触温度随接触时间的变化曲线。当Zr-4合金和H13钢的初始界面温度分别约为700 ℃和350 ℃时,无润滑剂时Zr-4合金表面温度达到稳定的时间为7.7 s,界面换热系数由250 W·m?2·℃?1增大至2700 W·m?2·℃?1;有润滑剂时Zr-4合金表面温度达到稳定的时间延长至12 s,界面换热系数由131 W·m?2·℃?1增大至1900 W·m?2·℃?1。这表明该润滑剂具有较好的高温热障性能。   相似文献   

16.
 The optimization of heat treatment and chemical composition for Inconel 718 alloy has been investigated uninterruptedly because of its excellent mechanical properties and metallurgical workability. The species, chemical compositions and content of equilibrium phases of Inconel 718 alloy in the temperature range of 600-1100 ℃ were calculated by using thermodynamic software “Thermo-Calc” and the latest relevant datebase of Ni-base superalloys. A concept of elemental partitioning fraction was used to study the partitioning characteristics of alloying elements in each equilibrium phase at different temperatures, such as Ni, Cr, Fe, Nb, Mo, Al, Ti and C, and some calculation results were confirmed under a scanning transmission electron microscope (STEM). The results showed that the elemental partitioning characteristics with the change of temperature revealed the selective partitioning characteristic of alloying elements in equilibrium phases at different temperatures, such as Nb was mainly distributed in δ and γ′ phase, C in carbides, Al and Ti in γ′ phase and Cr, Mo in Laves phase. At the same time, the effect of the change of component and quantity for each precipitated phase on matrix phase can be helpfully understood, which provided a theoretic foundation to optimize the chemical composition and heat treatment in different environments for Inconel 718 alloy.  相似文献   

17.
Metallurgical and Materials Transactions B - Effects of slag composition and alloy content as well as temperature on the deoxidation and desulfurization of Inconel 718 superalloy by...  相似文献   

18.
以Inconel718合金为研究对象,分别采用等离子旋转电极法(PREP)和气体雾化法(VIGA)制备了金属球形粉末,研究了不同制粉方法对粉末在热处理前后的组织和成分分布的影响,采用对流热交换原理对两种制粉方法对应的冷速进行了模拟计算。分析结果表明:采用PERP法制备的Inconel718合金粉末在氧增量、球形度及流动性方面具有一定的优势,而VIGA法制备粉末有利于提高粉末的显微硬度、细粉粒径;两种粉末经过相同的热处理工艺后,其组织变化规律相同,均析出富Nb和Mo相。模拟计算结果表明:VIGA法制备细粒径粉末的冷速明显高于PREP法对应的粉末,与实验对应的性能数据结果相吻合。  相似文献   

19.
For improving the service performance of Inconel 718 alloy,especially used as a corrosion-resistant alloy for special environment,the microstructure and mechanical property of different carbon-containing Inconel 718 alloys were investigated by the Thermo-Calc software and experiments.The experimental results indicated that the morphology,distribution and types of carbides mainly existing in the form of MC were hardly influenced by solution treatment at 1 050 ℃ for 1h.The precipitation amount and particle size of carbides decreased with the decrease of carbon content,which was the main reason resulting in the increase of ductility and toughness.In addition,moving dislocation could be restrained by the precipitation of carbides.Therefore,the strength could benefit from the precipitation strengthening of carbides when the precipitation ofγ′/γ″phase was not influenced by the precipitation of carbides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号