首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sn-Pb软钎焊料由于润湿性好、性能优良,是电子封装领域主要运用的传统软钎焊材。Pb有毒不符合绿色发展的理念,减少Pb的使用能保护环境和人体健康,必须研发新型无铅焊料替代传统的Sn-Pb焊料。新型的低温软钎焊料包括Sn-Bi, Sn-In两系合金。本文总结了Sn-Pb焊料的优点和缺点,与Sn-Pb焊料相比较阐述了Sn-Bi, Sn-In系低温无铅焊料的性能。分析了In, Bi的相互作用对锡基无铅焊料组织及性能的影响。低温的Sn-Bi-In系合金绿色无污染,将是一种能够运用于消费电子产品的新型无铅焊料合金。通过相图计算可以筛选较优的合金成分,为Sn-Bi-In无铅焊料的设计和性能研究提供参考,因此Sn-Bi-In三元系相图的计算尤为重要。文章中论述了Sn-Bi-In系合金的相图计算研究现状及热力学模型,收集整理了一些Sn-Bi-In三元合金的相结构参数和热力学数据,同时结合了CALPHAD说明了将相图计算运用于新型Sn-Bi-In焊料开发的优势。  相似文献   

2.
阐述了无铅焊料的发展过程,对Sn-Zn系无铅焊料发展现状及研究进行了介绍.详细分析了一些合金元素添加后对Sn-Zn系钎焊料的影响,同时叙述了对Sn-Zn焊料与Cu、Al、Ni材质基板之间的界面反应研究,并对Sn-Zn系钎焊料的研究及商业化应用进行了论述和展望.  相似文献   

3.
研究微量稀土元素对Sn57Bi1Ag无铅焊料合金显微组织以及性能的影响。结果表明,当稀土含量为0.05%~0.5%(质量分数)时,对该无铅焊料合金的导电性和腐蚀性影响不大,但使熔化区间温度降低;可以提高焊料合金的力学性能,提高焊料的铺展面积,细化组织。比较Ce、Er、Y三种稀土元素对焊料合金的影响,发现Er元素可以更好地提高焊料合金的综合性能,Ce次之。  相似文献   

4.
栗慧 《稀土》2011,32(6)
研究微量稀土元素对Sn57Bil Ag无铅焊料合金显微组织以及性能的影响.结果表明,当稀土含量为0.05% ~0.5%(质量分数)时,对该无铅焊料合金的导电性和腐蚀性影响不大,但使熔化区间温度降低;可以提高焊料合金的力学性能,提高焊料的铺展面积,细化组织.比较Ce、Er、Y三种稀土元素对焊料合金的影响,发现Er元素可以更好地提高焊料合金的综合性能,Ce次之.  相似文献   

5.
Sn-Ag-Cu无铅焊料的发展现状与展望   总被引:12,自引:0,他引:12  
Sn—Ag—Cu系无铅焊料由于具有良好的焊接性能和使用性能,已逐渐成为一种通用电子无铅焊料;综述了Sn-Ag—Cu系焊料从无到有、从二元发展至二三元乃至多元的发展历程,及其研究现状和当前应用较多的几个典型成分的各自应用水平,对当前Sn-Ag-Cu系焊料的熔化温度、润湿性、组织结构和力学性能研究方面以及存在的超电势问题、抗氧化和抗腐蚀性不足、使用的可靠性等主要问题作了总结,并根据国情对其在国内外的发展前景作了预测和展望,提出在发展无铅焊料过程中需要着重注意研究的几个方面,并指出今后较长一段时间内不会出现某一种无铅焊料能像Sn-Pb系那样独断电子封装行业的状态。  相似文献   

6.
锡锌(Sn-Zn)无铅焊料在电子封装中具有广阔的应用前景,但其润湿性和抗氧化性能较差。采用16通道摇摆炉制备Sn-9Zn-x In(x=0,1,2,3,4;%,质量分数)焊料合金,研究In元素对Sn-9Zn无铅焊料合金微观组织、熔化特性、润湿性、抗氧化性以及力学性能的影响。结果表明:添加的In元素与Sn,Zn形成低熔点合金,明显降低焊料合金的熔点及固相线温度;加入In元素使得焊料合金表面张力降低,润湿性能提高;焊料合金的润湿力在In含量为3%达到最大值(0.857 mN);焊料添加In元素形成In2O3氧化膜有保护熔体的作用,有助于增强焊料合金抗氧化性能,不含In元素时焊料合金的氧化增重为0.47%,而In含量为3%时其氧化增重质量分数为0.14%,抗氧化性能提高;添加In后在Sn基体中产生固溶强化和析出强化使得合金抗拉强度先提高后降低,当In含量为3%时,焊料合金极限抗拉强度达到55 MPa左右。加入In后破碎为长条状、针棒状的富Zn相使得延伸率逐渐下降,当In添加量大于3%时,延伸率急剧下降。综合焊料的力学性能、润湿性、抗氧化性能,确定In的在Sn-9Zn中最优添加量为3%。  相似文献   

7.
Bi对Sn-Zn无铅焊料的性能影响   总被引:1,自引:0,他引:1  
Pb及其化合物具有毒性,长期使用或接触含Pb物质,将给人类健康带来极大的危害,无铅化势在必行。研究已表明,最有可能替代Sn-Pb焊料的无毒合金是以Sn为基的合金,目前国内外对Sn—Zn系无铅焊料的研究较多,因为Sn—Zn共晶合金的机械性能良好,与Sn—Pb焊料一样,具有较好的延展性,可以拉制成线材使用,且拉伸强度和蠕变性能都优于Sn—Pb合金,  相似文献   

8.
无铅焊料中添加硒可提高润湿性能,但硒不能直接添加到无铅焊料熔体中,需以Sn-Se中间合金形式添加,常规采用真空或惰性气体保护炉制备Sn-Se中间合金,但存在产生剧毒的二氧化硒和硒损耗大等诸多问题。本文探讨采用包裹挤压法制备Sn-Se中间合金,克服了现有技术的不足,研究表明该法设备投入少、操作容易、效果较好。  相似文献   

9.
无铅焊料研究进展和若干前沿问题   总被引:13,自引:0,他引:13  
乔芝郁  张启运 《稀有金属》1996,20(2):139-143
评述了国外无铅焊料研究的现状和前景,比较了几种有潜力的无铅焊料的性能,指出了无铅焊料研究的几个前沿问题。  相似文献   

10.
采用人工模拟助焊剂介质的储存环境和盐雾腐蚀两种的方法研究了Sn-X-Cu-Ni系列无铅焊料腐蚀性能,结果表明,SnXyCu1.5Ni系列焊料中Sn-X4.5-Cu1.5-Ni合金的耐蚀性能最佳,合金发生局部性腐蚀为主,当y≥5时,焊料的耐蚀性能随着y的增加而变差。  相似文献   

11.
Microstructures and properties of SnZn-xEr lead-free solders   总被引:1,自引:0,他引:1  
The Sn9Zn eutectic alloy is the nontoxic lead-free solders alternative having a melting temperature which is closest to that of the eutectic SnPb alloy. In order to improve the properties of SnZn lead-free solders, 0-0.5 wt.% of rare earth Er was added to the base alloys, and the microstructures were studied. Results showed that the addition of rare earth Er could enhance the wettability of SnZn solders, with 0.08%Er addition, the spreading area gave an 19.1% increase. And based on the mechanical testing, it was found that the tensile force and shear force of SnZn-xEr solder joints could be improved significantly. Moreover, the oxidation resistance of SnZn0.08Er solder was better than that of SnZn solder. In addition, it was found that trace amounts of rare earth Er could refine the microstructures of SnZn solders, especially for Zn-rich phases, and excessive amount of rare earth Er led to a coarse microstructure.  相似文献   

12.
研究了少量合金元素Cr,Al对Sn-3.0Ag-0.5Cu(305)无铅钎料高温抗氧化性的影响。钎料在液态下的表面颜色变化以及热重分析表明,Cr,Al能明显改善305合金钎料的抗氧化性能。通过合金元素Cr,AI的抗氧化机制和X射线衍射分析得出:Al和Cr在钎料表面形成致密氧化膜,形成“阻挡层”,抑制了钎料的氧化。同时也比较了合金元素Cr,Al对305钎料润湿性能的影响,结果表明:单独加Al不利于钎料的铺展,少量的Cr和Al同时加入对钎料的铺展没有太大的影响。实验证实:Cr和Al的共同作用明显提高了Sn-3.0Ag-0.5Cu钎料的高温抗氧化性,同时对钎料的润湿性也没有恶化作用。  相似文献   

13.
用机械合金化法来制备(Ag-Cu28)80-Inx-Sn20-x合金焊粉。利用差示扫描量热仪(DSC)、X-射线衍射仪(XRD)及扫描电子显微镜(SEM)和Simple-PCI软件对制备合金粒子的熔化特性、物相、微观结构和粒度分布等进行表征分析。研究结果表明:机械合金化法可以有效的制备(Ag-Cu28)80-Inx-Sn20-x合金焊粉。组分为(Ag-Cu28)80-In10.5-Sn9.5合金焊粉的熔化温度最低为490.9℃,其物相组成主要为富Ag相和-βCu81Sn22相。球磨30 h,(Ag-Cu28)80-Inx-Sn20-x体系合金化完全。球磨至80 h,合金粉体的平均尺寸约为47.64μm,铺展率为110.76 cm2/g。  相似文献   

14.
BACKGROUND/OBJECTIVE: Current albumin solders for tissue-welding are soluble in physiological fluids, prior to laser irradiation. These solders are therefore subjected to mechanical alterations, which can weaken the solder-tissue repair. In this study, an albumin solder (laser activated) was developed with low solubility and with the ability to retain (partially) its mechanical characteristics in saline solution. STUDY DESIGN/MATERIALS AND METHODS: Gauged protein samples of solder were immersed into 0.5 ml saline solution for fixed intervals of time. The solder samples contained four bovine serum albumin (BSA) concentrations: 56%, 66%, 70%, and 75% (by weight). A Bradford protein assay measured the BSA solubility of the solders. The 70% and 75% BSA solders were also used to weld in vitro Wistar rat intestine sections with a diode laser (lambda = 810 nm, power = 270 mW). RESULTS: The solubility of the 75% BSA solder was significantly decreased with respect to the other solders (Anova, P < 0.05). This solder also showed comparable weld strength (13 gm) to the 70% BSA solder. CONCLUSION: The 75% BSA solder strongly reduced the albumin solubility in saline solution, without affecting its tissue-welding properties.  相似文献   

15.
The variations of thermal conductivity with temperature in the Sn-based lead-free binary solders, Sn-10 wt pct X (X = Ag, In, Bi, Cu, Sb, Zn), were measured by using the linear heat flow apparatus. The thermal conductivities of Sn-based lead-free solders at their melting temperature were obtained from graphs of thermal conductivity variation with temperature. The variations of electrical conductivity with temperature for same solders were also determined from the Wiedemann–Franz (W–F) equation by using the measured values of thermal conductivity.  相似文献   

16.
The Sn-Ag/CeO2 nanocomposite solders have been pulse electrodeposited from an aqueous citrate bath containing varying concentrations of CeO2 nanopowders (1 to 30 g/L). Microstructural characterization, hardness, melting point, electrical conductivity, wear resistance, and residual stress measurement of the composite coatings indicate that the composite deposited from an electrolyte containing 15 g/L CeO2 possesses the optimum properties and thus can have potential applications in solder joints and packaging.  相似文献   

17.
Effects of minor additions of Cu, Bi, and In on microstructure, melting temperature, and tensile properties of Sn-Ag-based lead-free solders were investigated. It was found that the intermetallic compounds (IMCs) Ag2In and Cu6Sn5 are formed in In- and Cu-containing solders, respectively. At low concentration, Bi dissolved in the Sn matrix and tended to precipitate pure Bi particles at the solubility limit of 4 wt pct Bi. The formation of large Ag3Sn precipitates from the solder matrix was suppressed when alloying bismuth into the Sn-Ag alloy. The Bi addition resulted in a significant linear increase of the ultimate tensile strength (UTS) of solders, which is attributed to a solid-solution hardening mechanism. Solder strengthening due to In and Cu is less pronounced and attributed to a dispersion strengthening mechanism. The additions of Cu, Bi, and In all depressed the melting temperatures of Sn-Ag-based solders; however, In is the most effective one.  相似文献   

18.
Computational thermodynamics and kinetics were used to design the Pb-free micro-solders for replacing the conventional Sn-Pb solders because of the health and environmental safety problem.On the basis of CALPHAD (Calculation of Phase Diagrams) method we can easily calculate properties such as the liquidus projection, isothermal and vertical sectional diagrams and phase fraction in multicomponent system including Ag, Bi, Cu, In, Sb, Sn, Zn and Pb elements. In addition, other related information such as the surface tension, viscosity of the liquid phase and solidification simulation can also be obtained. DICTRA (Diffusion Controlled Transformation) software was used to simulate the interfacial reactions between substrate and Pb-free solders, which can easily give the information on the growth of intermetallic compounds and moving speed of interface between substrate and solders etc.  相似文献   

19.
InBiSn and InSn eutectic alloy solders used for Josephson packaging were characterized for the basic understanding of their behavior. Both physical structures and mechanical properties of these solders were studied under various conditions which partly simulate the processing and environmental exposure of these materials. Their interaction with the interface material (Pd/Au) was also probed in an attempt to understand the failure mechanism and to assess the package reliability.  相似文献   

20.
OBJECTIVE: Finding an optimal soldering system for a titanium prosthesis has become increasingly important with the successful introduction of titanium and titanium alloys to dentistry. This study examined the effect of corrosion on the strength of the soldered joints of pure titanium and Ti-6Al-4V alloys joined using various solders. METHODS: Commercially pure titanium and Ti-6Al-4V alloy rods (2 mm in diameter; 25 mm long) were soldered in an argon atmosphere using four solders: two kinds of titanium-based solder, a gold-based solder, and a silver-based solder. Tensile strengths were examined before or after immersion treatments. Specimens were immersed in either a 0.9% NaCl or 1.0% lactic acid solution held at 35 degrees C for 3 and 8 wk. The amounts of various metal elements released were determined by atomic absorption photospectroscopy. The natural potentials and potentiodynamic polarization behavior of the soldered specimens in 0.9% NaCl or 1.0% lactic acid were determined by a computer-assisted corrosion measurement system. The results were analyzed by ANOVA and Student's t-test. RESULTS: The cp-titanium and Ti-6Al-4V samples soldered with titanium-based solders exhibited tensile strengths of 300-400 MPa and were not significantly affected by immersion in either solution (no significant difference at p < 0.05). The strengths of both the cp-titanium and titanium alloy specimens soldered with gold-based solder were significantly lower than for any of the other specimens and were affected by immersion in the 0.9% NaCl solution (p < 0.01). The cp-titanium and Ti-6Al-4V specimens that were soldered with titanium-based solders did not show any transpassive regions or breakdown in the natural electrode potential range. On the contrary, the specimens soldered with gold-based and silver-based solders showed transpassive regions or breakdown potentials at less than 0 mV in 0.9% NaCl solution. SIGNIFICANCE: It is recommended that titanium-based solder be employed for titanium and titanium alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号