首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A correlation was made of the microstructure, wear resistance, and fracture toughness of hardfacing alloys reinforced with complex carbides. The hardfacing alloys were deposited twice on a low-carbon steel substrate by a submerged arc welding (SAW) method. In order to investigate the effect of complex carbides, different fractions of complex carbide powders included inside hardfacing electrodes were employed. Microstructural analysis of the hardfaced layer showed that cuboidal carbides, in which a TiC carbide core was encircled by a WC carbide, and rod-type carbides, in which W and Ti were mixed, were homogeneously distributed in the bainitic matrix. In the surface layer hardfaced with FeWTiC powders, more complex carbides were formed, because of the efficient melting and solidification during hardfacing, than in the case of hardfacing with WTiC powders. As the volume fraction of complex carbides, particularly that of cuboidal carbides, increased, the hardness and wear resistance increased. In-situ observation of the fracture process showed that microcracks were initiated at complex carbides and that shear bands were formed between them, leading to ductile fracture. The hardness, wear resistance, and fracture toughness of the hardfacing alloys reinforced with complex carbides were improved in comparison with high-chromium white-iron hardfacing alloys, because of the homogeneous distribution of hard and fine complex carbides in the bainitic matrix.  相似文献   

2.
Iron-based weld hardfacing deposits are used to provide a wear-resistant surface for a structural base material. Iron-based hardfacing alloys that are resistant to corrosion in oxygenated aqueous environments contain high levels of chromium and carbon, which results in a dendritic microstructure with a high volume fraction of interdendrite carbides which provide the needed wear resistance. The ferrite content of the dendrites depends on the nickel content and base composition of the iron-based hardfacing alloy. The amount of ferrite in the dendrites is shown to have a significant influence on the hardness and galling wear resistance, as determined using ASTM G98 methods. Fracture-toughness (K IC) testing in accordance with ASTM E399 methods was used to quantify the damage tolerance of various iron-based hardfacing alloys. Fractographic and microstructure examinations were used to determine the influence of microstructure on the wear resistance and fracture toughness of the iron-based hardfacing alloys. A crack-bridging toughening model was shown to describe the influence of ferrite content on the fracture toughness. A higher ferrite content in the dendrites of an iron-based hardfacing alloy reduces the tendency for plastic stretching and necking of the dendrites, which results in improved wear resistance, high hardness, and lower fracture-toughness values. A NOREM 02 hardfacing alloy has the most-optimum ferrite content, which results in the most-desired balance of galling resistance and high K IC values.  相似文献   

3.
A correlation is made of microstructure and fracture toughness in hypereutectic high-chromium white iron hardfacing alloys. In order to investigate the matrix effect of these alloys, in particular, four different matrices such as pearlite, austenite, and a mixture of pearlite and austenite were employed by changing the ratio of Mn/Si, while the total volume fraction of carbides was fixed. The hardfacing alloys were deposited twice on a mild steel plate by the self-shielding flux-cored arc-welding method. Fracture toughness was increased by increasing the volume fraction of austenite in the matrix, whereas hardness and abrasion resistance were nearly constant.In situ observation of the fracture process showed that cracks initiated at large primary carbides tended to be blocked at the austenitic matrix. This suggested that fracture toughness was controlled mainly by the amount of austenite in the matrix, thereby yielding the better toughness in the hardfacing alloy having the austenitic matrix. Considering both abrasion resistance and fracture toughness, therefore, the austenitic matrix was preferred for the high-chromium white iron hardfacing alloys.  相似文献   

4.
The hypereutectic Fe-Cr-C hardfacing alloys with different contents of TiB2 and Nb were prepared by selfshielded flux cored arc welding.The microstructure of a series of hypereutectic Fe-Cr-C hardfacing alloys added with various TiB2 and Nb contents was investigated by using optical microscopy(OM),scanning electron microscopy(SEM)and X-ray diffraction(XRD).In addition,their Rockwell hardness,microhardness and resistance to abrasive wear were tested.The results showed that the microstructure of a series of hypereutectic Fe-Cr-C hardfacing alloys consisted mainly of martensite,austenite,primary M7C3 carbides and eutectic M7C3 carbides.With the addition of TiB2,a new hard-phase TiC was produced in the hardfacing alloys.And in the alloys added with TiB2 and Nb,a new hard composite phase TiC-NbC was formed.The microhardness of the matrix was improved by adding TiB2 and Nb,but the effect on the Rockwell hardness of Fe-Cr-C hardfacing alloys was insignificant.The addition of TiB2 and Nb can also decrease the size of the primary M7C3 carbides and make the primary M7C3 homogeneous.As a result,the reinforced matrix,the more homogeneous primary M7C3 carbides,and the new hard-phase TiC-NbC all improved the wear resistance of Fe-Cr-C hardfacing alloys.  相似文献   

5.
采用金属粉型药芯焊丝自保护明弧焊制备Cr9Mn6Nb2WVSi Ti奥氏体耐磨堆焊合金,借助XRD,SEM,EDS及光学显微镜研究外加WC颗粒对其显微组织及耐磨性的影响。结果表明,随焊丝药芯中WC增加,奥氏体晶粒细化,沿晶分布的多元合金化碳化物数量增加。初生γ-Fe相原位析出了(Nb,Ti,V)C相和残留WCx颗粒,起到晶内弥散强化作用,沿晶分布的(Nb,Ti,V)C和M_6C(M=Fe,Cr,Mn,V,W)相隔断了网状或树枝状的沿晶M_7C_3相,使其细化、断续分布而提高合金韧性,减轻沿晶碳化物数量增加的不利影响。硬度和磨损测试结果显示,明弧堆焊奥氏体合金洛氏硬度仅为40~47,但其磨损质量损失低于高铬铸铁合金,具有良好耐磨性;随外加WC含量提高,奥氏体合金晶内和晶界显微硬度差异显著减小,合金表面趋于均匀磨损而改善耐磨性。该奥氏体合金的磨损机制主要是磨粒显微切削,适用于带有一定冲击载荷磨粒磨损的工况下使用。  相似文献   

6.
The objective of this study is to investigate effects of heat treatment on wear resistance and fracture toughness in duo-cast materials composed of a high-chromium white cast iron and a low-chromium steel as a wear-resistant part and a ductile part, respectively. Different size, volume fraction, and distribution of M7C3 carbides were employed in the wear-resistant part by changing the amount of chromium, and the volume fraction of martensite in the austenitic matrix was varied by the heat treatment. In the alloys containing a small amount of chromium, an interdendritic structure of eutectic M7C3 carbides was formed, and led to the improvement of wear resistance and fracture toughness. After the heat treatment, the selective wear of the matrix and the cracking or spalled-off carbides were considerably reduced since the hardness difference between carbides and matrix decreased by the increase in the matrix hardness, thereby leading to the improvement of the wear resistance. However, the fracture toughness of the heat-treated alloys was lower than that of the as-cast alloys because the matrix containing a considerable amount of martensite did not effectively prevent the crack propagation.  相似文献   

7.
The objective of this study is to investigate the correlation of microstructure with wear resistance and fracture toughness in duocast materials that consisted of a high-chromium white cast iron and a low-chromium steel as the wear-resistant and ductile parts, respectively. Different shapes, sizes, volume fractions, and distributions of M7C3 carbides were employed in the wear-resistant part by changing the amount of chromium and molybdenum. In the alloys containing a large amount of chromium, a number of large hexagonal-shaped primary carbides and fine eutectic carbides were formed. These large primary carbides were so hard and brittle that they easily fractured or fell off from the matrix, thereby deteriorating the wear resistance and fracture toughness. In the alloys containing a smaller amount of chromium, however, a network structure of eutectic carbides having a lower hardness than the primary carbides was developed well along solidification cell boundaries and led to the improvement of both wear resistance and toughness. The addition of molybdenum also helped enhance the wear resistance by forming additional M2C carbides without losing the fracture toughness. Under the duocasting conditions used in the present study, the appropriate compositions for wear resistance and fracture toughness were 17 to 18 pct chromium and 2 to 3 pct molybdenum.  相似文献   

8.
采用熔化极气体保护焊技术(gas metal arc welding,GMAW)制备了Fe-Cr-C-Nb堆焊合金,对合金在不同法向载荷(70~190 N)下进行干砂/橡胶轮松散三体磨粒磨损实验。通过X射线衍射分析、扫描电子显微镜观察、能谱分析、磨损失重测试、体视显微镜观察、激光扫描共焦显微镜观察和维氏硬度测量等手段表征了合金显微组织与磨痕特征,研究了合金在不同法向载荷作用下磨损行为的变化。结果表明:堆焊合金显微组织主要由初生奥氏体基体、网状共晶组织及分布于基体上的NbC硬质相组成;合金磨损损失、磨痕深度随法向载荷增大而增大,磨损机制主要为奥氏体基体的微切削及NbC、M7C3的脆性剥落;法向载荷的提高加剧了磨痕亚表面的加工硬化,从而提高了奥氏体基体耐磨性,这导致磨损损失及磨痕深度增长幅度缓慢。  相似文献   

9.
The microstructure of cobalt-based hardfacing alloys deposited by manual metal arc (MMA) welding, tungsten inert gas (TIG) welding, and laser cladding has been investigated as part of a study attempting to establish the relationship between microstructure and abrasive wear properties. For typical deposition conditions, the differences in freezing rates associated with the three processes are found to give rise to large differences in microstructure. The MMA process is found to lead to the largest degree of dilution of the hardfacing deposit; the TIG and laser deposits exhibited much lower levels of mixing with the base plate. For the deposition conditions used in this study and for the alloys examined, the scale of the microstructure decreases in the order MMA, TIG, and laser cladding, leading to an increase in the deposit hardness in the same order. It is found that with alumina as an abrasive, the wear rate persistently is higher with the MMA deposits (which have the coarsest microstructure with the lowest starting hardness), the weight loss being approximately linear with time. The laser and TIG deposits, which have more refined microstructures and slightly higher carbon concentrations, both are found to exhibit significantly lower wear rates. Initially, the TIG samples are the most resistant to abrasion, even though their microstructure compares with that of the laser samples; this is a consequence of their higher ductility associated with a lower rate of strain hardening. The laser samples, which contain a lower matrix iron concentration, strain harden more rapidly; consequently, they exhibit an initial decrease in wear rate. With the much harder silicon carbide abrasive, all samples show similar wear rates which do not decrease with time. The wear data are found to correlate with scanning and transmission electron microscopy observations, and it is possible to rationalize the interaction among microstructure, abrasive, and alloy deposition processes.  相似文献   

10.
Nitrogen alloying of Fe–Cr13–C hardfacing alloy produces marked precipitation strengthening to achieve an improvement in high‐temperature wear resistance. Two hardfacing alloys of Fe–Cr13–C (with and without nitrogen) are slid on carbon steel at high‐temperature of 600°C and high load of 600 N, and wear behaviors are studied systematically. It is found that abrasive wear occurrs on the surface of the hardfacing alloy due to abrasive action of crushed oxide particles coming from the surface of carbon steel on the high temperature. The wear resistance is determined by the size and distribution of precipitates. The results show that the hardfacing alloy can obtain a great increase in hardness and a marked decrease in wear depth of grooving due to the effect of carbonitirde precipitates. The high‐temperature wear resistance of the Fe–Cr13–C hardfacing alloy is improved by nitrogen alloying, and the wear mechanism is mainly plastic deformation with minimum depth of grooving caused by the oxide particles.  相似文献   

11.
12.
The present paper describes an investigation aimed at evaluating the microstructural and dry sliding adhesive wear characteristics of Fe–xCr–4Mn–3C hardfacing alloys applied through shielded metal arc welding. The effect of chromium addition on the microstructure of hardfacings was carried out by using optical microscope, field emission scanning electron microscope and X-ray mapping. Dry sliding wear tests were performed on a pin-on-disc wear tribometer. From the experimental results, it was observed that the primary carbides were refined and increased with the increase of chromium content. The morphology of carbides revealed that the primary carbides were rod shaped. The increased chromium content was also found to be beneficial to enhance hardness and wear resistance of hardfacings. The correlation between hardness and wear resistance exhibited the reliability of hardness as an indicator of the wear performance of hardfacings.  相似文献   

13.
A dual composite of WC-Co   总被引:1,自引:0,他引:1  
Hardness, fracture toughness, and wear resistance are strongly inter-related properties of cemented tungsten carbide. Higher hardness usually dictates higher wear resistance but at the cost of fracture toughness. A new dual composite of WC-Co, named DC carbide, is reported in this article. The new, hybrid, particulate composite material has higher fracture toughness than conventional WC-Co material at equivalent wear resistance. Moreover, it has higher wear resistance at equivalent fracture toughness when compared to tool steels. The improved properties are achieved by the composite microstructure that maximizes mean free path (MFP) between hard reinforcement particles. The new composite material is also unique in that the reinforcement phase is a composite material in and of itself.  相似文献   

14.
Correlation of microstructure with the hardness, wear resistance, and fracture toughness of two-layered VC/Ti-6Al-4V surface composites fabricated by high-energy electron-beam irradiation was investigated in this study. A mixture of VC powders and CaF2 flux was deposited on a Ti-6Al-4V substrate, and then an electron beam was irradiated on these powder mixtures to fabricate an one-layered surface composite. A two-layered surface composite was fabricated by irradiating an electron-beam again onto the powder mixture deposited on the one-layered surface composite. The composite layers of 1.2 to 1.5 mm in thickness were homogeneously formed without defects and contained a large amount (25 to 40 vol pct) of carbides in the martensitic or β-Ti matrix. This microstructural modification, including the formation of hard carbides and hardened matrix, improved the hardness and wear resistance. Particularly in the two-layered surface composite containing more carbides, the wear resistance was greatly enhanced to a level 7 times higher than that of the Ti-6Al-4V substrate. In-situ observation of the fracture process showed that microcracks were initiated at carbides and propagated along these microcracked carbides and that shear bands were formed in the matrix between these microcracks. In the two-layered surface composite, numerous microcracks were initiated at many carbides and then rapidly propagated along them, thereby lowering the fracture toughness.  相似文献   

15.
Alumina matrix composites reinforced with carbon nanotubes (CNTs) fabricated by CNT purification, mixing, compaction, and sintering processes, and the effects of the CNT addition on wear resistance were investigated in relation to the relative density, hardness, and fracture toughness. Wear resistance and fracture toughness were measured by the dry sliding wear test method and the indentation fracture test method, respectively. Zero to ~3 vol pct of CNTs were homogeneously distributed in the composites, although some pores existed. The wear resistance and fracture toughness increased with an increasing CNT fraction, but the composite specimen containing 3.0 vol pct of CNTs hardly showed an increase over the specimen containing 2.25 vol pct of CNTs. Observations of worn surfaces revealed that the wear mechanism involved both the abrasive and delamination wear modes in the specimens containing 0 to ~0.75 vol pct of CNTs, whereas the surface was worn largely in an abrasive wear mode in the specimens containing 1.5 to ~3.0 vol pct of CNTs. This was because CNTs helped to change the delamination wear mode to the abrasive wear mode by preventing crack initiation and propagation at alumina grains. The fracture toughness increase provided beneficial effects in the resistance to crack initiation and propagation, the reduction in delamination wear on the worn surface, and the consequent improvement in wear resistance. Because the effect of the porosity increase due to the CNT addition unfavorably affected the improvement of wear resistance and fracture toughness in the specimen containing 3.0 vol pct of CNTs, the appropriate level of CNT fraction was 1.5 to ~2.25 vol pct.  相似文献   

16.
Hardfacing is a type of surface treatment for the extension of service life of worn parts or structures and the improvement of the surface properties through deposition of the alloys using arc welding or laser cladding.[1,2] Among the hardfacing alloys, the high chromium hardfacing alloys have been used most extensively for dies or parts in various industrial areas because of their excellent hardness, corrosion resistance, and wear resistance as well as inexpensiveness.[2-6] These properties are obtained from the large volume fraction of hard chromium carbides.[3-8] The recent works on these alloys have focused on the property enhancement, the microstructural modification, and the high-temperature application.[1,7,8]  相似文献   

17.
The influence of a range of austenitizing and subcritical (tempering) heat treatments on the high-stress abrasion resistance and fracture toughness of four commercially significant grades of alloy white cast iron was investigated. Complementing an earlier study[1] on the influence of a more limited range of heat treatments on the gouging abrasion performance of the same alloys, the results showed that the effect of austenitizing temperature on high-stress abrasion pin test weight loss differed for each alloy. With increasing austenitizing temperature, these results ranged from a substantial improvement in wear performance and retention of hardness through to vir-tually no change in wear performance and substantial falls in hardness. Fracture toughness, however, increased markedly in all alloys with increasing austenitizing temperature. Tempering treatments in the range 400 °C to 600 °C, following hardening at the austenitizing temperature used commonly in industrial practice for each alloy, produced significant changes in both hard-ness and wear performance, but negligible changes in fracture toughness. Most importantly, the data showed that selection of the correct temperature for subcritical heat treatment to reduce the retained austenite content for applications involving repeated impact loading is critical if abrasion resistance is not to suffer.  相似文献   

18.
The effect of rare earth (RE) oxide on the microstructure and properties of TiC-based cermet/Cu alloy composite hardfacing materials was investigated by using scanning electron microscope (SEM), transmission electron microscope(TEM), impact test and wear test. The mechanism of RE oxide for improving the phase structure and the impact toughness was also discussed. The experimental results indicate that the microstructure of the matrix can be refined, and the micro- porous defects can be eliminated by adding RE oxide into the composite materials. The polycrystalline and amorphous phase structure is formed at the interface of cermet and matrix metal. The formed structure enhances the conjoint strength of interface. The frictional wear resistance can be improved obviously, although the microhardncss of the matrix metal can not be effectively increased by adding RE oxide.  相似文献   

19.
Nickel-base wear materials are typically used as weld hardfacing deposits, or as cast or hot isostatically pressed (HIP) inserts that provide the needed wear resistance to a base material with the desired mechanical properties. Most nickel-base wear materials contain high levels of chromium, silicon, carbon, and boron, which results in complex microstructures that are comprised of high volume fractions of silicide, carbide, and/or boride phases. The volume fraction of nickel-phase dendrite regions typically ranges from 40 to 70 pct, and these dendrite-phase particles are individually isolated by a matrix of silicide, carbide, and boride phases. The continuous matrix of brittle silicide, carbide, and boride phases results in a low damage tolerance for nickel-base wear materials, which is a concern in applications that involve high stresses, thermal transients, or shock loading. Fatigue crack growth (FCG) and fracture toughness (K IC) testing in accordance with ASTM E399 methods has been used to quantify the damage tolerance of various nickel-base wear materials. Fractographic and microstructure examinations were used to define a generic toughening mechanism for nickel-base wear materials. The toughness of nickel-base wear materials is primarily controlled by the plastic deformation of the nickel-phase dendrites in the wake of a crack moving through the matrix of brittle silicide, carbide, and/or boride phases, i.e., crack bridging. Measured K IC values are compared with calculated K IC values based on the crack-bridging model. Microstructure examinations are used to define and confirm the important aspects of the crack-bridging model. This model can be used to predict the toughness values of nickel-base wear materials and direct processing methods to improve the K IC values.  相似文献   

20.
The purpose of this work was to investigate the effect of La2 O3 on the granular bainite microstructure and wear resistance of hardfacing layer metal. The hardfacing layer metals with different contents of La2 O3 were prepared. The microstructures of the hardfacing layer metals were observed by field emission scanning electron microscopy(FESEM) and transmission electron microscopy(TEM). The hardness and wear resistance of the hardfacing layer metals were measured respectively. The results indicated that with the increasing content of La2 O3, the amount of granular bainite increased, while that of martensite decreased and that of retained austenite did not change obviously. When the content of La2 O3 was 2.55 wt.%, the volume fraction of the granular bainite in the hardfacing layer metal was 73.2%. Meanwhile, the wear resistance of the hardfacing layer metal was the largest, which was 12100 min/g. The mismatch between the face(100) of LaAlO3 and the face(100) of δ-Fe was 7.1%. Therefore, LaAlO3 could act as moderate effective heterogeneous nuclei of δ-Fe and the granular bainite could be refined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号