首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 782 毫秒
1.
2.
Considering the significance of CaO–Al2O3–RE2O3 (RE?=?rare earth) phase diagrams, the Redlich–Kister expression was employed to evaluate the binary phase diagrams of CaO–Al2O3, La2O3–Al2O3 and CaO–La2O3 systems in the present work. Also, the activities of CaO and Al2O3 in the CaO–Al2O3 binary system were calculated. The phase diagram of the CaO–Al2O3–La2O3 ternary system was first assessed by Kohler extrapolation method. The accuracy of calculated phase diagrams was validated by comparing with existing experimental points and the calculation results from the literature. The obtained diagrams will lay a foundation for Al-killed steelmaking process, metallurgical flux and other fields’ industrial application.  相似文献   

3.
The present work is carried out to study the evaporation of Na2O from CaO–Al2O3–SiO2–TiO2–MgO–Na2O slags with high basicity and high alumina in the temperature range of 1500–1560°C. The ratio of evaporation was determined by monitoring the Na2O content change of the slag melt under isothermal reduction conditions. The results show that the evaporation ratio increases with increasing the temperature. Higher basicity and increasing concentrations of Na2O, Al2O3 are also found to increase the evaporation ratio of Na2O, while MgO addition only slightly enhances the evaporation ratio. With TiO2 content increasing, the evaporation ratio first increases and then decreases. The evaporation rate of Na2O appears to be controlled by chemical reaction at the slag/gas interface in the beginning, followed by a mixed reaction-mass transfer regime, and finally a liquid-phase mass transport step. The apparent activation energy is 134.74?kJ?mol?1 for the chemical reaction regime and 268.53?kJ?mol?1 for the liquid-phase mass diffusion step.  相似文献   

4.
The new CaO–Al2O3–SiO2–Li2O–B2O3–Ce2O3 mould flux was devised to realise smooth continuous casting of Ce-bearing heat-resistant steel. The new devised mould flux was based on calcium-aluminate system, so the w(CaO)/w(Al2O3) has great influence on the properties of the slag, which is similar to the basicity in the silicate system. The melting temperature, viscous properties, slag structure and crystalline phases with different w(CaO)/w(Al2O3) were investigated. The melting temperature of the mould flux could remain relatively steady with w(CaO)/w(Al2O3) in the range of 1.0–1.82. The main network former in the new slag was [AlO4]-tetrahedron. The network formed by [AlO4]-tetrahedron was destroyed by increasing w(CaO)/w(Al2O3), the viscosity decreased consequently. The mould flux show weaker crystallisation tendency with increasing w(CaO)/w(Al2O3). When the temperature decreased to 1100°C, the change of the fully crystallised phases with increasing w(CaO)/w(Al2O3) was as follows: Li2O·Al2O3?+?2CaO·Al2O3·SiO2?→?Li2O·Al2O3?→?Li2O·Al2O3?+?3CaO·Al2O3?+?CaCeAlO4.  相似文献   

5.
《钢铁冶炼》2013,40(10):732-737
Abstract

Dissolution of Al2O3 into molten CaO–Al2O3–CaF2, a base system of mould flux for continuous casting of high Al steel, has been investigated by employing a rotating cylinder method. The dissolution rate of an alumina rod into molten CaO–Al2O3–CaF2 flux increased with increase in rotating speed and temperature. The apparent activation energy for mass transport of flux C was calculated to be 255·6 kJ mol?1. The rate controlling step during the dissolution process of the alumina rod into molten CaO–Al2O3–CaF2 flux was found to be the diffusion of the solute in the flux boundary layer. The dissolution rate of alumina into molten CaO–Al2O3–CaF2 flux increased with increasing CaO/Al2O3, and it may be caused by the increase in thermodynamic driving force and the decrease in the viscosity of the flux. When the Al2O3 rod was immersed into molten flux, an intermediate compound of CaO.2Al2O3 formed firstly and then dissolved into molten flux.  相似文献   

6.
Samarium (Sm) has been widely used in making aluminum (Al)–Sm magnet alloy materials. The research team for this study developed a molten salt electrolyte system which directly produces Al–Sm alloy to replace the energy intensive conventional distillation technology. In this study, molten melt density was measured and operation conditions were optimized to separate Al–Sm alloy product from the fluoride molten melt electrolysis media based on density differences. Archimedes' principle was applied to measure density for the basic molten fluoride system (BMFS: Na3AlF6–AlF3–LiF–MgF2) electrolysis media in the temperature range from 905 to 1055 °C. The impact of temperature (t) and the Al2O3 and Sm2O3 addition ratio (w(Al2O3), w(Sm2O3)) in the basic fluoride system on molten melt density was examined. The fluoride molten melt density relationship was determined to be: ρ = 3.11701 ? 0.00802w(Al2O3) + 0.027825w(Sm2O3) ? 0.00117t. The test results showed that molten density decreases with increase in temperature and Al2O3 addition ratio, and increases with the addition of Sm2O3, and/or Al2O3 + Sm2O3. The separation of Al–Sm (density 2.3 g/cm3) product melt from the BMFS melt is achieved by controlling the BMFS density to less than 2.0 g/cm3. It is concluded that the optimal operation conditions to control the BMFS molten salt density to less than 2.0 g/cm3 are: maintain addition of Al2O3 + Sm2O3 (w(Al2O3) + w(Sm2O3)) < 9% of Na3AlF6, Al2O3/Sm2O3 ratio (w(Al2O3):w(Sm2O3)) > 7:3, and temperature between 965 and 995 °C.  相似文献   

7.
Powder Metallurgy and Metal Ceramics - Phase equilibria and structural transformations in the ternary ZrO2–La2O3–Gd2O3 system at 1600°C were studied by X-ray diffraction,...  相似文献   

8.
Dudnik  E.V.  Glabay  M.S.  Kotko  A.V.  Korniy  S.A.  Marek  I.O.  Red’ko  V.P.  Ruban  A.K. 《Powder Metallurgy and Metal Ceramics》2020,59(7-8):359-367
Powder Metallurgy and Metal Ceramics - Variations in the phase composition, specific surface area, and morphology of structural components in the ultrafine powder of composition (wt.%) 70 (90 ZrO2...  相似文献   

9.
Phase equilibria of Cu–O–Al2O3 system were experimentally investigated in a temperature range of 1100–1400°C under 0.21?atm oxygen pressure. The experiments were conducted employing a high-temperature equilibration and quenching method. Microstructures of the quenched samples were observed with scanning electron microscope. The phase compositions in the samples were analysed with electron probe microanalysis technique. Measured solubility of Al2O3 into the molten oxide ranged from 0.0 to 1.8?wt-%. A small solubility of Cu2O into Al2O3 was also observed ranging from 1.20 to 1.58?wt-%.  相似文献   

10.
Powder Metallurgy and Metal Ceramics - Alumina-based nanocrystalline powders with different ZrO2 amounts were produced for the first time by hydrothermal synthesis in an alkaline environment for...  相似文献   

11.
12.
13.
The influence of SiC particle on viscosity of CaO–MgO–Al2O3–SiO2 melts was investigated by the rotating-cylinder method. It was found that temperature dependence of viscosity could be described by the Arrhenius law for systems with or without SiC particle addition. The activation energies of liquid–solid mixtures were mainly determined by liquid phase. Temperature had little influence on the relative viscosity (defined as the viscosity ratio of solid–liquid mixture to pure liquid). Viscosity and relative viscosity increased as decreasing rotation speed and increasing volume fraction of SiC solid particle. For the same volume fraction of SiC particle, relative viscosity was affected by the liquid slag compositions. The relative viscosity was smaller when composition of liquid slag had a larger CaO/SiO2 ratio or MgO/Al2O3 ratio. Meanwhile, it was found that the smaller SiC particle will lead to a larger relative viscosity.  相似文献   

14.
《钢铁冶炼》2013,40(7):486-492
Abstract

The viscosity of CaO–5MgO–Al2O3–SiO2 slag with low silica was measured by rotating cylinder method up to 1823 K. Slag compositions were chosen based on five different levels of SiO2 content between 0 and 11·80%. The MgO content was 5·0%. The mass ratio of CaO/Al2O3 was varied from 0·66 to 1·95. It was shown that viscosity decreased with increasing temperature and decreased with increasing the mass ratio of CaO/Al2O3, following by an increase with further increasing the mass ratio of CaO/Al2O3. The viscosity decreased with the NBO/T ratio increasing, and the trend that flow activation energy changes with the NBO/T ratio of slag was the same as the trend that viscosity changes with the NBO/T ratio. Based on the experimental data as the boundary of the homogenous phase region, the mass triangle model was used to calculate the viscosity of low silica region.  相似文献   

15.
Powder Metallurgy and Metal Ceramics - Ultrafine 90AZK, 80AZK, 70AZK, and 58.5AZK powders in the Al2O3–ZrO2–Y2O3–CeO2 system were produced for the first time by a combined method...  相似文献   

16.
Russian Journal of Non-Ferrous Metals - The effect of Na2O on the viscosity, structure, and crystallization behavior of CaF2–CaO–Al2O3–MgO–TiO2 slag was studied using the...  相似文献   

17.
In order to accurately control the rare earth content in liquid steel in electroslag remelting (ESR) process, according to the ion and molecule coexistence theory (IMCT) of slag structure and corresponding phase diagrams, a thermodynamic calculating model for the evaluation of mass action concentrations (designated by Ni for structure unit i) for La2O3-Al2O3-CaF2 slag system was formulated. The results show that the calculated values of NLa2O3 are in good agreement with the reported measured values, indicating that this calculating model can wholly embody the characteristics of the slag system. The activity of La2O3 decreases with the increasing of the Al2O3 and CaF2 content, and Al2O3 is stronger than CaF2 in decreasing the activity of La2O3. But the activity of La2O3 increase with the increasing in temperature at the composition range of 30% La2O3, 20% Al2O3, 50% CaF2. Above all, the activity of La2O3 in La2O3-Al2O3-CaF2 slag system can be quantitatively analyzed by this thermodynamic model, and this model can provide a theoretical basis for precisely controlling the lanthanum content in molten steel in ESR process.  相似文献   

18.
In order to develop low fluoride or fluoride free CaO–Al2O3 based mould flux for casting high aluminium steel, an investigation was carried out to study the effect of substituting CaF2 with B2O3 on heat transfer and crystallisation behaviour of CaO–Al2O3 based mould flux by employing a heat transfer simulator of mould flux and a single hot thermocouple technique. The results showed that addition of CaF2 promoted heat transfer of CaO–Al2O3 based mould flux, which was opposite to the effect of CaF2 on heat transfer in conventional CaO–SiO2 based mould flux. Addition of CaF2 inhibited crystallisation of CaO–Al2O3 based mould flux by lowering the start crystallisation temperature and prolonging the incubation time of crystallisation. B2O3 showed similar effects to CaF2 on heat transfer and crystallisation of CaO–Al2O3 based mould flux, but its ability to promote heat transfer and suppress crystallisation was stronger than CaF2. Ca3B2O6 (melting temperature 1480°C) was found as the primary crystalline phase in fluoride free CaO–Al2O3 based mould flux compared with the primary crystalline phase Ca2Al3O6F (melting temperature 1507°C) in fluoride bearing (20% CaF2) CaO–Al2O3 based mould flux.  相似文献   

19.
《粉末冶金学》2013,56(1):72-75
Abstract

Cr2O3–Fe2O3 based oxide mixtures for reference electrode powders of oxygen sensors were processed using oxide coprecipitation route. A special method for preparing reference electrode powders has been developed by mixing coarse Cr particles with the oxide mixture in the form of Cr–Fe hydroxide. Morphology and size of the mixed oxide powders were characterised by means of scanning electron microscopy and laser diffraction method. With the coprecipitation process, chemically homogeneous and very fine powders with a mean particle size of 1.53 μm were prepared. This powder mixture adhered and loosely coated to Cr particles. The processed reference electrode powders were tested in low level oxygen concentration measurements of steelmaking process under industrial scale. The reference electrode powders showed excellent results in terms of electromotive force reproducibility, response time and accuracy in soluble aluminium predictions at the oxygen concentration measurements. Most of the particles of the reference electrode powder remained separated after dipping to molten steel.  相似文献   

20.
《钢铁冶炼》2013,40(4):350-353
Abstract

Evaluation of CAS-OB refining slags showed that the melting temperature and viscosity were very high and could further increase during the CAS-OB refining process, causing excessive slag to stick to the snorkel with resulting operational problems. To avoid this, B2O3–CaO (mass ratio 1 : 1) and CaF2–CaO (mass ratio 1 : 1) were employed as modifiers added to the slag. The fusibility (melting temperature and viscosity) and desulphurising capacity of modified slag were investigated. Both B2O3–CaO and CaF2–CaO can effectively lower the melting temperature and viscosity of slag. The results of experiments on sulphur partition equilibrium between metal and slag indicate that the sulphur content of metal can be further decreased by the modified slag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号