首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
稀土掺杂合成离子电池正极材料LiMn2O4技术   总被引:2,自引:1,他引:2  
锂离子电池由于工作电压高、自放电率低、能量密度大、循环寿命长而广泛应用于便携式设备.与锂钴氧相比,锂锰氧以其价格低廉、对环境无污染是一种更有吸引力的锂离子动力电池正极材料,但比容量低和高温循环性能差是长期以来困扰锂锰氧实现工业化的关键技术难题.我们采用机械化学活化法制备前驱体合成了多元稀土掺杂锂锰氧材料,研究表明,用稀土修饰的锂离子电池正极材料掺杂锂锰氧(LixMn2yREzO4,0.95≤x≤1.1,0≤y≤0.3,0≤z≤0.3),具有较标准的尖晶石结构;掺入合适的稀土元素后所合成的正极材料的比容量和循环性能都具有较大的改善,同时也具有比较优良的高温性能.  相似文献   

2.
为了减少锂离子电池正极材料与电解液的相互作用,用沉淀法在LiNi0.8Co0.2O2表面包覆一层Al2O3,并通过电化学测试、扫描电镜和X射线衍射研究其表面形貌和晶体结构.结果表明,经过表面包覆后,有效地抑制了电解液对正极材料的侵蚀,虽然初始放电容量略有降低,但循环性能明显改善;Al2O3包覆量对LiNi0.8Co0.2O2电化学性能存在影响,包覆量为0.7%(质量分数)的样品性能最优.  相似文献   

3.
锂离子电池正极材料LiNiO2的制备及修饰   总被引:5,自引:0,他引:5  
详细综述了锂离子电池正极材料锂镍氧的制备方法,探讨了不同离子对的掺杂改性作用和表面修饰对材料性能的影响.如果严格控制合成条件、优化合成工艺,可以合成近乎化学计量的LiNiO2.通过混合掺杂改性和表面修饰,可以制备出循环性能好、充放电容量大、热稳定性高的锂镍氧正极材料.  相似文献   

4.
锂离子电池正极材料的发展现状和研究进展   总被引:1,自引:1,他引:0  
介绍了锂离子电池正极材料钴酸锂、镍酸锂、锰酸锂、磷酸铁锂、钒的氧化物以及导电高聚合物正极材料的发展现状和研究进展.LiCoO2在今后正极材料发展中仍然有发展潜力,通过微掺杂和包覆都可使钴酸锂的综合性能得到提高,循环性能大大改善.环保、高能的三元材料和磷酸铁锂为代表的新型正极材料必将成为下一代动力电池材料的首选.  相似文献   

5.
高能量比、循环寿命长、成本低和无环境污染是目前锂离子电池正极材料的研究趋势.LiFePO4以其优良的电化学性能,被认为是最有前途的锂离子电池正极材料.该文综述了现有LiFePO4制备工艺,包括高温固相反应法、水热合成法、溶胶-凝胶法、微波合成法和改性法(如掺杂、包覆)等;并且指出LiFePO4可望于近期内在小功率电池中得到应用,而包覆、掺杂等改性手段是提高其电导率和粒子扩散速率的关键技术.  相似文献   

6.
高镍正极材料具有高的比能量和较长的循环寿命,是推动锂离子电池技术发展的关键材料之一。传统高镍正极材料的晶粒形貌是二次球粒子,其二次球结构在电化学循环中容易开裂,从而引起电化学性能的衰退和电池安全性问题。单晶化策略能够有效地提升高镍正极材料的长周期循环性能和安全性,缓解高镍正极材料的热稳定性、晶体结构及颗粒结构稳定性等问题。但是缓慢的锂离子扩散动力学导致高镍单晶正极材料倍率性能恶化和材料结构衰退,是高镍单晶正极材料面临的重大挑战。综述比较了单晶正极材料与传统二次球正极材料之间的结构及电化学性能的差异,分析了单晶正极材料稳定性机制,重点阐述了高镍单晶正极材料的缓慢的锂离子扩散动力学对其失效机制的影响,总结了现阶段研究者改善高镍单晶正极材料的锂离子扩散动力学的策略,提出了提升高镍单晶正极材料的锂离子扩散动力学未来的研究重点,为高镍单晶正极材料产业化研究提供理论指导。  相似文献   

7.
近年来,锂离子电池(LIB)成为了便携式电子产品和电动汽车(EV)中不可或缺的一部分。LiNi0.5Mn1.5O4(镍锰酸锂简称LNMO)作为正极材料,由于其能量密度可观(650 W·h·kg-1)、工作电压高(4.7 V)、原材料成本低和安全性能好受到广泛关注。然而,LNMO正极目前存在高温下循环性能差和容量下降的问题。表面包覆技术被认为是一种前景极佳的解决方案。本文从包覆材料以及包覆方法上总结了目前LNMO正极包覆领域的研究进展。  相似文献   

8.
非均匀沉淀法包覆合成LiNi0.9 Co0.07 Mn0.03O2锂离子正极材料   总被引:1,自引:0,他引:1  
采用非均匀沉淀法包覆合成了LiNi0.9Co0.07Mn0.03O2锂离子正极材料.前驱体合成中各工艺条件与包覆材料的比表面积和电化学性能息息相关.试验研究了沉淀剂、搅拌速度、pH值和氨水浓度对包覆沉淀的影响及煅烧过程对材料电化学性能的影响.结果表明:在优化实验条件下Co/Mn复合包覆在β-Ni(OH)2表面上;正极LiNi0.9Co0.07Mn0.03O2首次放电容量为195mAh·g-1,50次循环后容量仍保持为188.6mAh·g-1.循环伏安研究表明:与LiNiO2相比,Co/Mn复合包覆合成正极材料LiNi0.9Co0.07Mn0.03O2的相变得到很好的抑制,材料显示出良好的循环性能.  相似文献   

9.
采用溶胶-凝胶法合成了掺杂改性的锂离子电池正极材料LiCo0.7Al0.3O2,并对其进行包覆MgO改性.采用X射线衍射和扫描电镜对该材料的晶体结构和表观形貌进行分析,通过恒电流充放电、循环伏安以及电化学阻抗技术分析其电化学性能.试验结果表明,所制备的正极材料LiCo0.7Al0.3O2和MgO-LiCo0.Al0.3O2均为α-NaFeO2型层状结构,形貌近似球形,且颗粒分布均匀.包覆后的材料充放电电压提高,充放电循环性能得到明显改善,其中以包覆量为1.0%时材料性能最好,首次放电容量为120.17 mAh·g-1,30次循环后容量保持率为89.3%.  相似文献   

10.
富锂锰基正极材料x Li2Mn O3-(1-x)Li MO2(M=Ni,Co,Mn,0x1)具有放电比容量高(250 m Ah·g-1)、成本低、对环境友好等特点,是有潜力的下一代锂离子电池用正极材料。但是该材料的首次不可逆容量高、循环和倍率性能较差,尤其是充放电循环过程中放电中压不断降低,阻碍了其实际应用。研究者通过采用表面包覆、表面处理、元素掺杂以及制备特殊的形貌等方法,极大地提升了富锂锰基正极材料的电化学性能。然而,对该材料是固溶体还是两相纳米复合的结构存在争议。另外,对材料中的O元素和Mn元素是否可逆地参与电化学反应尚无定论。本文主要从材料结构、脱嵌锂机制和材料改性(表面包覆、表面处理、掺杂以及特殊形貌的材料制备)等几个方面综述了锂离子电池富锂锰基正极材料的研究进展,并提出了下一步的研究方向。  相似文献   

11.
锂离子电池正极材料LiMn2O4的研究现状   总被引:2,自引:0,他引:2  
尖晶石相LiMn2O4具有价格低、无毒、制备简单等特点,因此有着很好的应用前景,被看作最有可能成为新一代商用锂离子电池的正极材料。文章简要介绍了锂离子电池正极材料LiMn2O4的研究现状,主要包括材料的各种制备技术、当前LiMn2O4材料研究存在的主要问题及抑制其容量衰减的解决方案。  相似文献   

12.
Sn films with different particle sizes were prepared via electrodeposition, and their microstructure as well as morphology was characterized by scanning electron microscopy and X-ray diffraction. As the anode materials for Li-ion batteries, the electrochemical performances of the Sn films are significantly influenced by their morphology and structure. During electrodeposition, the grain size of Sn increases with duration of deposition, leading to anode compaction and cell capacity deterioration. The Sn-300 anode electrodeposited for 300 seconds shows the highest charge/discharge capacity of 592.1 mAh/g, while the value decreases to 437.7 mAh/g in the Sn-600 anode (electrodeposited for 600 seconds). Both Sn-300 and Sn-600 anodes show similar irreversible capacity and Coulomb efficiency. The Sn-3600 anode fabricated via electrodeposition for 3600 seconds shows the least capacity and the worst cyclic performance. The current study demonstrates that the increase in the particle size of active Sn materials worsens the capacity and cyclic performances of Sn-anode materials for Li-ion batteries. This finding improves our understanding on relationship between morphology/microstructure and performances of Li-ion battery Sn anode materials.  相似文献   

13.
锂离子电池已经在新能源动力电池、便携式电子设备及储能领域广泛使用。商业化锂电池大多采用锂过渡金属氧化物/石墨体系作为正负极,由于电池材料本身的理论储锂容量较低,限制了锂电池向高比能量、长使用寿命方向的发展。对于当前成熟的石墨类碳负极材料,其嵌锂能力基本已被充分发挥,难以实现这一目标。本文介绍了应用于锂离子电池负极的相关材料和研究进展,并就作为下一代锂离子电池理想负极材料-硅负极进行了展望。  相似文献   

14.
锂离子电池(LIBS)已经广泛应用到便携式电子产品和电动汽车上。然而,随着锂资源的开采使用,锂离子电池的成本也在逐渐增加。相比之下,地壳中较高的钾含量使得钾离子电池(KIB)成本相对较低。进而,钾离子电池作为一种新型低成本储能器件受到了广泛关注。但钾离子的半径较大,导致充放电过程中,离子嵌入/脱出的动力学性能较差。因此,电池电极材料的选择面临着新的挑战。在对钾离子电池电极材料进行分类和总结的基础之上,重点介绍了石墨及各种形式的碳材料、过渡金属氧化物、合金类等负极材料以及普鲁士蓝、层状金属氧化物、聚阴离子型化合物等正极材料的研究进展,并对钾离子电池的发展进行了展望,以期对高性能钾离子电池的发展提供新思路。   相似文献   

15.
高功率快放型锂离子电池是目前锂离子电池领域研究的重点方向之一。为了获得具有高功率密度的锂离子电池,正极材料须具有较高的电压和较高的电子与离子导电率,正极材料主要包括高电压钴酸锂、镍锰酸锂和高电压三元材料,负极材料包括碳系材料、钛基材料和金属氧化物材料,以及为提高首效和降低负极电位而采用的预嵌锂方法,并对锂离子电池电解液用锂盐、溶剂和添加剂进行了综述。最终总结了功率密度测试方法,并对高功率锂离子电池的研究进行展望。   相似文献   

16.
介绍了锂离子电池锡基负极材料的研究进展。重点介绍了锡基负极材料的合成方法、电极反应机理及其电化学性能。指出锡基负极材料由于其高的可逆容量,若能克服目前存在的问题,将有望成为新一代锂离子电池负极材料。  相似文献   

17.
综合运用XRD、ICP及TOC表征破碎废旧锂离子电池筛分后得到的电极材料成分,并利用TGA、GC-MS对电极材料的碳热还原反应机理进行探究。在无氧焙烧条件下,废旧锂离子电池中的负极材料石墨与正极材料钴酸锂发生反应,得到产物钴与碳酸锂,经湿式磁选分离后,钴以单质形式富集在磁性固体中,钴回收率为95.12%。  相似文献   

18.
以可持续的生物质为前驱体的碳材料具有成本低、可再生、资源丰富和环境友好的特点,将其作为下一代钠离子电池的负极材料极具发展的可持续性。以生物质为来源的碳材料一般为硬碳,其空间碳原子层排列无序且不连续,并易形成大量空隙,可为离子存储提供丰富的反应活性位点。利用制备时间短、反应易控的草酸钾高温刻蚀法制备并以杨絮前驱体碳化得到的三维材料,拥有良好的导电性、较大的比表面积和发达的三维空间结构,有利于与电解液的接触与渗透,减小离子传输距离。杨絮衍生的生物质碳材料作为钠离子电池负极材料,表现出优异的电化学性能:在2 A/g的电流密度下循环400圈后的比容量为150 mAh/g;且在10 A/g的电流密度下,该材料依然拥有将近110 mAh/g的比容量,展现了良好的循环性能和倍率性能,为将生物质碳材料作为高储存能力和长寿命的钠离子电池负极的持续开发和实际应用提供了实验依据。  相似文献   

19.
随着新能源汽车及储能行业的快速发展,传统正极材料难以满足人们对电池高能量、高密度锂电池的要求。富含Li和Mn的层状氧化物xLi2MnO3·(1–x)LiMO2 (M=Ni,Mn,Co),其高比容量可超过250 mA·h·g–1,有希望成为下一代锂离子电池最理想的正极材料。但是,富锂材料仍存在首次循环不可逆容量高、循环性能差和倍率容量低等问题,为解决这些问题,本文阐述了富锂正极材料的结构和电化学反应之间的构效关系,讨论了金属氧化物、金属氟化物、碳、导电聚合物和锂离子导体等涂层材料对富锂正极材料电化学性能的影响规律及作用机理,同时还对以上涂层在富锂正极材料中应用的优缺点进行了总结。最后,对锂离子电池富锂正极材料的包覆改性的未来发展发现作出展望。   相似文献   

20.
以我国资源丰富的低成本优质无烟煤为原料,经过2800 ℃高温纯化、石墨化处理,制备出锂电池用负极材料,用相同手段处理商业化石墨的前体石油焦与石墨化无烟煤作对比。通过X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM),拉曼光谱(Roman)和氮吸附?解吸等手段对无烟煤基负极材料进行微观结构的表征。采用恒流充放电(GCD),循环伏安(CV)表征其电化学性能。实验结果表明,无烟煤基石墨化负极材料的石墨化度可达95.44%,比表面积为1.1319 m2·g?1,石墨片层结构平整光滑。该石墨化无烟煤作为锂离子电池的负极材料首次库伦效率为87%,在0.1C的电流密度下具有345.3 mA·h·g?1的可逆容量,且在高倍率下该材料比石墨化石油焦材料显现出更好储锂性能,这归功于石墨化无烟煤较为规则高度有序的表面结构。在不同倍率循环后电流密度恢复到0.1C时容量基本无衰减,100圈循环后可逆容量保持率高达93.8%,基本与石墨化石油焦负极相当,拥有优异的循环稳定性。无烟煤基石墨在容量、倍率性能及循环稳定性上基本接近甚至超过石墨化石油焦。本研究表明,采用优质无烟煤作为原料生产锂离子电池负极材料具有潜在的研究价值和广阔的商业前景。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号