首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
掺杂的TiO2阴极对熔盐电解的影响   总被引:3,自引:0,他引:3  
在熔盐电解制备钛的TiO2阴极中掺杂不同比例的CaCO3粉末,采用SEM,EDS及XRD分析烧结后和电解后阴极的形貌及成分,考察了CaCO3的掺杂对电解提取钛反应过程的影响。结果表明:在TiO2阴极中掺杂CaCO3粉末可以增加烧结后阴极片的孔隙,影响TiO2颗粒尺寸的大小,有利于加快阴极电解反应的速度,提高电解效率。  相似文献   

2.
以无水氯化钙作为熔盐,采用熔盐电解法对TiO2阴极片进行脱氧,通过X射线衍射(XRD)和扫描电镜(SEM)对TiO2电解产物的相组成、电极表面形貌与元素组成进行观察与分析,研究熔盐的预电解脱水与熔盐电解时间对TiO2电解脱氧行为的影响。结果表明,熔盐未经预电解时,TiO2阴极片不发生脱氧反应,电解产物只有CaTiO3相;熔盐经预电解脱水后,TiO2电解产物部分或全部为低价钛氧化物,预电解时间达到15h即可有效去除熔盐中的水分,从而获得较佳的熔盐电解脱氧效果,电解产物为氧含量较低的Ti2O。TiO2电解脱氧是分步进行的,随电解进行,先后出现Ti2O3、TiO、Ti2O,由于钛的化合价逐渐降低,所需分解压升高,导致脱氧效率逐渐降低。TiO2阴极的脱氧反应是由表面到心部进行,电解后的阴极片明显分层,表层为氧含量较低的Ti2O,中间层为CaTiO3和钛的低价氧化物,心部为CaTiO3。  相似文献   

3.
熔盐电解法制备高钛铁合金   总被引:6,自引:0,他引:6  
采用电化学还原法,温度为900℃,在CaCl2熔盐中以烧结的TiO2与钛铁矿混合物(Ti:Fe=1:1原子比)为阴极,石墨棒为阳极,制备出了高钛铁合金.探讨了混合物烧结后的相组成变化及高钛铁合金的合金化历程.实验结果表明,混合物烧结后,TiO2由锐钛矿结构转变为金红石结构,钛铁矿转化为热力学稳定的Fe2TiO5.钛铁矿的晶体结构由烧结前的三方晶系经950℃以上烧结后,转变为斜方晶系的Fe2TiO5.制备出的高钛铁中铁钛含量分别为:77.19%和9.68%(质量分数).其合金化历程为:TiO2先生成CaTiO3,然后继续脱氧还原为金属钛;钛铁矿优先还原出金属铁,然后与生成的金属钛发生合金化反应生成钛铁合金.表明熔盐电解nO2与钛铁矿的混合物是一条制备高钛铁合金的新途径.优化电解条件提高电流效率可进一步提高电解速度,得到质量更高的高钛铁合金.  相似文献   

4.
对不同重量的TiO2电极熔盐电解法制取金属钛进行了研究,分析了电解过程中的电流变化、物相组成和形貌特征.实验表明,电解前期,形成了中间产物CaTiO3,这也是主要的中间产物,随后形成的中间产物有Ti4O7、Ti3O5和Ti2O3等较高价钛氧化物,随着电解进行,它们逐步被还原为较低价的钛氧化物和纯钛.电解21h以上,产物为纯钛,氧含量为0.34%左右;延长电解时间到30 h后,电解得到的纯钛衍射峰值降低、峰也有所宽化,这可能是纯钛中固溶入一些杂质造成的,同时电解产物的晶粒显著增大.电解不彻底时,会有TiC中间产物保留在电解产物中.在TiO2的电化学还原过程中,氧的离子化机制和钙热还原机制同时存在.  相似文献   

5.
在高纯氩气气氛下,在CaCl2熔盐中电解高钛渣制备金属钛,研究了成型压力与阴极片孔隙率的关系以及对电解过程的影响,并采用XRD、SEM等分析手段对阴极片及电解后的物相和微观形貌结构进行表征.结果 表明:成型压力对阴极片孔隙率有直接影响,随着成型压力升高,阴极孔隙率下降;阴极片的孔隙率直接影响电脱氧过程,适当的孔隙率有利于形成中间产物CaTiO3和提高电还原速率.4 MPa压制的阴极1050℃烧结2h,孔隙率为34.79%,电解12h产物氧含量降低至1.75%,钛含量为95.72%,此时阴极片的电化学性能较好.  相似文献   

6.
固态原位电还原TiO2制取Ti的阴极还原过程   总被引:1,自引:0,他引:1  
运用循环伏安法对固态原位电还原TiO2制取B的阴极还原过程进行了研究,探讨了固态原位电还原TiO2制取Ti的电解机理.研究发现,固态TiO2原位直接电还原为Ti是分步进行的:第一步为可逆、产物不溶的二电子反应,即Ti(Ⅳ)+2e=Ti(Ⅱ);第二步同样为可逆、产物不溶的二电子反应,Ti(Ⅱ)+2e=Ti.同时,在电解温度下,CaCl2熔体中存在着少量CaO.Ca2+在阴极放电析出金属Ca,即Ca2++2e=Ca,生成的金属Ca热还原TiO2生成金属Ti.固态原位电还原TiO2制取Ti是TiO2的直接电还原与Ca热还原TiO2共同作用的结果.  相似文献   

7.
熔盐电解制备碳化钛粉末的研究   总被引:1,自引:1,他引:0       下载免费PDF全文
在CaCl2熔盐中,以TiO2和炭黑的混合物为阴极,在850℃电解制备得到了碳化钛粉末。研究不同电解时间后所得阴极产物的物相结构,探讨了熔盐电解法制备碳化钛的阴极反应过程及机理。结果表明,氧离子在固相中的传质是阴极反应速度的限制性环节。熔盐电解法制备碳化钛的工艺简单、反应温度低且对环境友好。  相似文献   

8.
本研究通过Sr F_2-Na F熔盐电解Ti O_2制备了金属钛。分别以Ti O_2片、Ti O_2粉末-不锈钢网作为电解阴极,研究阴极孔隙率、电解时间、添加剂等因素对电解效果的影响,并对产物进行了XRD分析。研究发现:阴极孔隙率是电脱氧反应的重要影响因素;Ti O_2在Sr F_2-Na F熔盐中按Sr Ti O_2.6→Ti_2O_3→Ti_2O→Ti顺序被还原;Ti O_2粉末-不锈钢网阴极由于其高孔隙率,O~(2-)传输相对容易,在3.0 V的槽电压下电解持续6 h可得到较纯净的金属钛,电流效率为31.08%。  相似文献   

9.
以泡沫镍包裹含钛废渣和Fe2O3混合物为阴极,碳棒为阳极,在900 ℃、3.1 V、CaCl2熔盐电解质中,采用熔盐电脱氧法制备钛铁合金,重点考查阴极成型压力对微观形貌及电解效果的影响。结果表明,烧结后阴极片孔隙率随着成型压力的增加而减小,当成型压力为2 MPa时,烧结后阴极片孔隙率为39.5%,具有良好的电化学活性,电解产物颗粒尺寸均匀、氧含量低、呈明显海绵态,产物主要为FeTi和少量Fe2Ti;随着成型压力的增加,电解产物逐渐致密化,发生脱氧反应的三相界面降低,阴极内部的氧离子迁移受阻,导致电脱氧效果变差,产物中出现TiO。电解初期电流迅速下降,20 min后趋于平缓,150 min后出现增加的趋势。  相似文献   

10.
试验以Ta2O5为原料,用水与Ta2O5以一定比例混合,采用粉浆浇铸成型,自然晾干24h,在马弗炉中分别以1000℃、1100℃、1200℃、1300℃烧结6h后制的阴极块为阴极,以石墨为阳极,无水CaCl2和NaCl混合熔盐为电解体系,在800℃的温度下,采用3.2V电解电压进行10h电解,制取钽粉。试验结果表明:采用1200℃烧结6h制备的阴极块电解效率最高,电解产物中的氧含量最低。  相似文献   

11.
利用综合热分析仪研究了O2/N2与O2/CO2气氛下Fe2O3与K2CO3对无烟煤催化燃烧反应性的影响。结果表明,在O2/CO2气氛下,Fe2O3与K2CO3均可以催化无烟煤粉的燃烧,但其催化作用要弱于O2/N2气氛,且在低氧气浓度的O2/CO2气氛下对Fe2O3与K2CO3的抑制作用大于高氧气浓度。氧气浓度为20%~80%时,K2CO3在O2/N2气氛下催化煤粉前期燃烧使燃烧由反应控制转变为扩散控制,Fe2O3则只在氧气浓度为20%时能改变煤粉前期燃烧的控制步骤;而Fe2O3与K2CO3在O2/CO2气氛下均只能在氧气浓度为20%时改变煤粉前期燃烧的控制步骤,由反应控制转变为扩散控制。  相似文献   

12.
MgO-CeO2复合载体负载Cu2O催化剂的性能研究   总被引:1,自引:1,他引:0  
采用柠檬酸燃烧法制备MgO-CeO2(10%,质量分数)复合载体和CeO2单载体,用浸渍还原法以水合肼为还原剂制备负载型Cu2O催化剂,以环己醇脱氢制环己酮为探针反应,考察其脱氧性能;采用TPR,XRD,CO2-TPD,环己酵/环己酮-TPD及BET等手段对催化剂进行表征.实验发现,与商品MgO和CeO2为载体的催化剂相比,复合载体负载的催化剂Cu2O/MgO-CeO2(10%)表现出更高的环己醇脱氢活性.这是由于复合载体负载的催化剂中CeO2的存在提高了催化剂的比表面积,有利于活性组分的分散;增强了催化剂中弱碱位的强度并增加了弱碱中心的数量.改变了催化剂的表面吸附能力,因而对环己醇脱氢具有更高的催化活性.3种催化剂都呈碱性,是其具有高环己酮选择性的原因之一.  相似文献   

13.
分别采用正交试验法和单因素试验法考察I_2-KI-H_2O_2体系下碘质量分数、n(I_2)/n(I~-)比值、双氧水用量、固液比对金溶解速率的影响程度,以及碘化钾质量分数、m(I_2)/m(I~-)比值、双氧水用量、溶液温度和溶液pH对金溶解时间的影响,然后对金溶解后的溶液进行稳定性测试。结果表明,各因素影响程度大小顺序依次为固液比、双氧水用量、n(I_2)/n(I~-)比值、碘质量分数。当碘化钾质量分数为0.2~0.25g/mL、m(I_2)/m(I~-)=1∶5~1∶4、双氧水用量0.7~0.9mL、温度室温、pH为原溶液状态时,金溶解速率最大,溶液的稳定性可以满足使用要求。  相似文献   

14.
运用XRD、SEM等方法研究了Al2O3-CeO2-ZrO2-Ni高能球磨体系在不同的球磨工艺条件下的组织结构转变和分散性的问题.结果表明,四种物质一起球磨时,不会发生机械合金化,但随着球磨时间的延长,Al2O3、CeO2、ZrO2粉末都会不断被细化,而Ni颗粒仍较粗大且分布很不均匀.通过改变球磨顺序,将CeO2、ZrO2和Ni先球磨30 h再添加Al2O3继续球磨30 h,却能使CeO2和ZrO2发生合金化生成固溶体,且Ni颗粒有明显的细化,分散性也明显提高.  相似文献   

15.
以含PdCl_3SC(NH_2)_2~-溶液为原料,采用Fe-H_2O_2还原法回收溶液中的钯,研究了还原过程的机理,考察了pH、还原时间、H_2O_2用量和铁粉用量对还原率的影响。结果表明,铁粉被氧化后的Fe~(2+)可催化H_2O_2而产生氧化能力极强的·OH自由基,该自由基对复杂的PdCl_3SC(NH_2)_2~-结构具有很强的破坏力,使稳定的PdCl_3SC(NH_2)_2~-以PdCl _4~(2-)形态分离出来,提高了铁对钯的还原性能。在溶液体积20mL,25℃,pH=2,H_2O_2用量0.10mL/mL,反应时间60min和铁粉用量0.50mg/mL的条件下,钯的平均还原率可达99.25%。  相似文献   

16.
为揭示Nb2O5-Al2O3-MgO-Na2O-CaO-SiO2多元含铌炉渣体系中的铌矿物的定向结晶规律,采用高温相平衡—冷淬—SEM-EDS/XRD/EMPA试验方法,考察了温度、钙硅比(CaO/SiO2)、Nb2O5含量等因素对炉渣相平衡关系的影响,并构建了含铌矿物结晶析出的优势相图。结果表明:铌的结晶矿物主要有三种,分别为Ca2Nb2O7、Ca(14-x)Nb(2+x)Si8O(35+1.5x)和3CaO?MgO?Nb2O5;铌先富集于液相,相较于脉石组分,含铌固相为后析出相;CaO/SiO2增加会使含铌固相优势区间发生从Ca2Nb2O7相到Ca(14-x)Nb(2+x)Si8O(35+1.5x)相、再到3CaO?MgO?Nb2O5相的转变。Ca2Nb2O7相的优势析晶区间为:温度1 050~1 200 ℃,C/S=0.8~1.2。Nb2O5在Ca(14-x)Nb(2+x)Si8O(35+1.5x)相中的嵌布质量浓度在18.5%~19.5%。  相似文献   

17.
原位反应制备Mo_2FeB_2基金属陶瓷烧结过程热力学分析   总被引:1,自引:0,他引:1  
对Fe-6B-48Mo-0.8C材料体系用液相烧结原位反应法制备了Mo2FeB2三元硼化物金属陶瓷,用SEM-EDS观察分析了烧结体的组织结构与成分组成,用热分析(DSC)、X射线衍射分析与热力学计算表征了体系的反应过程。结果表明,在该材料体系中,Fe2B、MoB2为反应中间相,Mo2FeB2为最稳定存在的相,呈条块状均匀分布在铁基粘结相中。通过热力学计算分析,在Mo-Fe-B三元体系中,Mo2FeB2的Gibbs自由能最低,形成能力最强,在481.8℃开始形成Fe2B,当温度达到1293.7℃时,该体系形成最稳定的Mo2FeB2相,并使材料致密化。  相似文献   

18.
采用等温溶解法测定20、40和60℃条件下,NaOH-Na2SnO3-Na2PbO2-H2O四元水盐体系及边界三元水盐体系NaOH-Na2SnO3-H2O、NaOH-Na2PbO2-H2O的相平衡数据.结果表明,在三元体系中,锡酸钠的溶解度随碱度的升高而降低,在高碱度条件下,40℃溶解度较高,亚铅酸钠的溶解度随温度的升高而升高,而随碱度升高呈现S形变化;在四元体系中,锡酸钠、亚铅酸钠之间相互影响,但溶解度变化趋势与三元体系一致.该研究成果可为碱、锡、铅的分离提供基础数据.  相似文献   

19.
张晨  刘世洲 《炼钢》1998,14(3):47-50
通过回归正交设计确定了连铸保护渣基料挥发率同温度、Na2CO3含量、CaF2含量、减度及时间的二次函数关系式。分析结果表明,温度对挥发率的影响随着Na2CO3含量的增加而增加;碱度R为0.9时挥发率最大;Na2CO3对挥发率的影响略高于CaF2。  相似文献   

20.
针对高碱度高氧化铝的CaO-Al2O3-SiO2-TiO2-MgO-Na2O六元渣系,通过在1 773 K温度下测定其与铁液间的硫分配比,研究该渣系的脱硫性能.利用偏最小二乘法回归分析,建立了可较好预测硫分配比的回归方程,利用回归方程分析了炉渣碱度(mCao/msiO2)、MgO、TiO2、Al2O3以及Na2O对硫分配比的影响.结果表明,当炉渣碱度大于2.9时,炉渣硫分配比均在140以上,表明该渣系具有较强的脱硫能力.在实验范围内,硫分配比随炉渣碱度的增加而提高.当碱度一定时,MgO对硫分配比的影响不大,TiO2、Al2O3均使硫分配比降低,其中Al2O3降低硫分配比较为明显.硫分配比随Na2O增加而增加,少量的Na2O即可明显提高炉渣的脱硫能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号