首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
高炉炉身下部及炉缸、炉底冷却系统的传热学计算   总被引:6,自引:0,他引:6  
在高炉冷却器及炉缸、炉底热面凝结一层渣铁壳有利于防止炉衬侵蚀,延长高炉寿命。为了达到这一目的,需要设计无过热的铸铁冷却壁、铜冷却壁和板一壁结合冷却器以及无过热的炉缸和炉底。为此建立了高炉炉身下部冷却器及炉缸、炉底温度场的数学模型,应用C 语言在VC 集成环境下开发了高炉炉身下部冷却器及炉缸、炉底温度场计算软件。计算结果表明,通过优化炉身下部冷却器及炉缸、炉底的设计参数,能够确保在冷却器热面及炉缸、炉底热面凝结一层渣铁壳。目前,国内一些大型高炉的设计中已采用该软件。  相似文献   

2.
介绍了高炉炉缸上部风口区冷却壁损坏后,通过安装铜柱冷却器,来增强此处的冷却强度;实践证明它是保证炉壳冷却、延长高炉寿命、护炉安全生产行之有效的措施。  相似文献   

3.
针对当前高炉铜冷却壁过早损坏、炉墙波动大的现状,对铜冷却壁有镶砖和无镶砖条件下的传热特性进行了深入研究,得出了延长高炉铜冷却壁寿命的关键在于延长镶砖寿命这一认识。在此基础上,提出了延长镶砖寿命的措施在于控制适当的边缘气流,以及以铜冷却壁温度为标准的合理控制区间。通过国内外高炉的案例调研,指出了控制冷却壁温度延长铜冷却壁寿命的有效性,最后提出了当镶砖脱落后可及时采取降料面喷涂来延长铜冷却壁寿命的措施。  相似文献   

4.
高炉铜冷却壁的应用及探讨   总被引:6,自引:0,他引:6  
刘菁 《钢铁研究》2001,1(3):52-55
在分析了铸铁冷却壁存在的缺陷的基础上,介绍了铜冷却壁在国外高炉的应用情况以及在国内的研制和应用情况,并探讨了铜冷却壁应用中的几个问题,高炉使用铜冷却壁,可将炉腰、炉腹及炉身下部的寿命延长至15-20年。  相似文献   

5.
《炼铁》2017,(4)
对铜冷却壁的传热特性及高炉气流控制进行了阐述。针对当前高炉铜冷却壁寿命不理想和操作炉型不稳定,炉况波动大的现状,对铜冷却壁在有镶砖和无镶砖条件下的传热特性进行了阐述,并探讨了铜冷却壁高炉的气流控制问题。认为,在有镶砖的情况下,铜冷却壁不会出现温度过热,热冲击小、渣皮稳定性好,延长高炉铜冷却壁寿命的关键在于延长镶砖的寿命;控制好边沿气流强度,防止渣皮频繁脱落并减小热震,可延长镶砖的寿命;控制边沿气流可用铜冷却壁的温度来判断,以高于供水温度5~10℃,低于60~70℃为宜。  相似文献   

6.
沈宗斌  周渝生 《炼铁》1994,13(3):50-53
概述了高炉冷却器的发展过程及应用现状,并展望了其应用前景。目前在高炉上应用冷却器主要有3种型式:全部采用铜冷却板,采用第四代球墨铸铁冷却壁,采用双重冷却器(即冷却壁结合冷却板并在冷却壁与炉壳间增加铜质薄板夹套)。使用铜冷却板的高炉虽有炉龄达11年的佳债,但由于需用大量的铜,国内暂时难以广泛应用。轧制铜冷却壁的寿命远远超过其它材质冷却器,每吨铁水投资也最低,我国应积极研究铜冷却壁应用的可能性。  相似文献   

7.
在整个高炉结构中,炉身下部至炉腰、炉腹位置是影响高炉寿命最薄弱环节之一,铜冷却壁应用该区域可形成“渣皮”作为永久性炉衬,有效延长高炉中部寿命,实现了高炉高效和长寿的统一。然而,在生产实践中渣皮频繁脱落,铜冷却壁热面裸露,导致铜冷却壁大面积破损,严重影响生产。针对鞍钢某高炉铜冷却壁破损情况进行了简单的介绍;采用金相分析、扫描电镜及能谱分析和化学分析方法,对破损的高炉炉腰段铜冷却壁进行取样研究。研究结果表明:在高炉内服役过程中,铜冷却壁中氧含量偏高,在受到高温煤气流冲蚀后,在其热面产生了“氢脆”现象,这是造成铜冷却壁破损的根本原因。提出了防止铜冷却壁破损的建议。  相似文献   

8.
《炼铁》2017,(4)
对邯钢8号高炉铜冷却壁的破损情况进行了调查,并提出了延长铜冷却壁寿命的一些措施。破损调查发现,从6段炉腹上部1/3到7段炉腰中下部2/3,高度约3 m的整个环带磨损都非常严重,该部位破损的主要原因是由于渣皮不稳,铜冷却壁经常受到炉料与气流磨损所致,而设计问题也是导致磨损的另一原因;9段炉身下部较完好,只有少量破损,此部位破损的原因,主要是由于冷却壁变形,向炉内凸出导致的磨损。8号高炉实践表明,生产中及时安装微型冷却器与硬质压入是铜冷却壁破损后的有效补救措施。  相似文献   

9.
采用铜冷却壁,延长高炉炉体寿命   总被引:6,自引:1,他引:5  
刘琦 《中国冶金》2003,(5):12-16
阐述了铜冷却壁的技术优势,并对采用铜冷却壁的经济效益进行了综合分析,认为采用铜冷却壁可使高炉炉体下部寿命与炉底炉缸寿命同步,在经济上也具有竞争力。采用铜冷却壁还必须注意配套技术的采用,否则,高炉也难以实现长寿目标。  相似文献   

10.
采用铜冷却壁延长高炉炉体寿命   总被引:7,自引:2,他引:5  
刘琦 《炼铁》2002,21(6):7-10
阐述了铜冷却壁的技术优势,并对采用铜冷却壁的经济效益进行了综合分析,认为采用铜冷却壁可使高炉炉体下部寿命与炉底炉缸寿命同步,在经济上也具有竞争力。采用铜冷却壁还必须注意配套技术的采用,否则,高炉也难以实现长寿目标。  相似文献   

11.
铜冷却壁炉墙内型管理传热学反问题模型   总被引:4,自引:3,他引:4  
铜冷却壁要长期安全地工作,在其热面必须有渣皮覆盖;同时铜冷却壁的高导热能力很可能导致炉墙结瘤,因此,对炉墙监控有利于高炉长寿,同时也是实现长寿和高效的结合点。结合首钢高炉的现场实际情况,采用传热学反问题的方法,开发了铜冷却壁炉墙内型管理模型,对渣皮状况进行跟踪,从而为高炉操作提供依据和条件,有利于避免铜冷却壁裸露、炉墙结瘤等异常发生。  相似文献   

12.
钱亮  程素森  朱清天 《冶金自动化》2006,30(4):20-23,33
介绍了高炉铜冷却壁的一种监控方法,实现了对铜冷却壁炉墙热面温度和渣皮厚度进行监控和高炉炉墙内型的可视化。从实践的角度证明了铜冷却壁炉墙监控的必要性,给出了本监控方法的实现思路。在对铜冷却壁前段渣皮进行监控的过程中发现:通过监控可以在操作过程中防止铜冷却壁裸露、结瘤等异常发生;通过调整高炉操作维持适当厚度的渣皮,能实现高炉长寿和高效的结合,最优化高炉操作和最大化高炉生产。  相似文献   

13.
针对高炉炉墙结构复杂,铜冷却壁热面工况难以直接检测的问题,采用有限元分析技术,建立高炉炉腰下部区域炉墙三维稳态传热模型,并对不同工况下炉墙温度场分布进行仿真。通过结合仿真结果和现场可检测数据,不断修正热面边界条件,推算出铜冷却壁热面挂渣厚度,为高炉操作提供必要的信息和可靠的指导。  相似文献   

14.
高炉冷却壁非稳态传热研究   总被引:4,自引:0,他引:4  
钱中  吴俐俊  程惠尔  邓凯 《钢铁》2005,40(6):21-23
研究了铸钢、球墨铸铁和纯铜3种不同材质高炉冷却壁的非稳态传热过程。考察当高炉煤气温度分别为指数型和周期型变化时,冷却壁壁体温度场的变化情况。并根据不同材质冷却壁在非稳态工作过程中的表现,讨论这3种冷却壁的性能优劣。结果证明,铜质冷却壁是理想的长寿冷却壁,其性能明显优于铸钢和球墨铸铁冷却壁,并且这种优势在非稳态传热过程中表现的更为突出。同时铸钢冷却壁优于球墨铸铁冷却壁。  相似文献   

15.
首钢2号高炉铜冷却壁使用的体会   总被引:2,自引:0,他引:2  
结合首钢2号高炉铜冷却壁使用的经验,重点阐述了铜冷却壁作为一种长寿、高效的冷却设备,铜冷却壁需要其热面的渣皮来实现对自身的保护。而铜冷却壁热面的渣皮对炉内煤气流分布的变化十分敏感,因此,稳定煤气流分布,实现渣皮的稳定,是铜冷却壁高炉稳定、顺行的关键。  相似文献   

16.
提高高炉炉腰及炉身下部冷却壁抗热变形能力是维持高炉长寿的关键.采用热态实验和数值模拟手段研究高炉炉腰及炉身下部区域铜钢复合冷却壁的传热及热变形行为,并与铜冷却壁进行对比分析.铜钢复合冷却壁热面无渣铁壳覆盖,煤气温度1200℃条件下,铜钢复合冷却壁最高温度为180℃,传热性能与铜冷却壁接近.铜钢界面最大等效应力约为114.45 MPa,低于铜钢复合板的抗拉强度.铜钢复合冷却壁发生弯曲变形,中心z向位移为0.66 mm,较铜冷却壁低约25.8%;顶底端沿z向位移为0.13 mm,较铜冷却壁低约50%;曲率为0.93×10-4 mm-1,较铜冷却壁低约51.81%.铜钢复合冷却壁抗变形能力优于铜冷却壁,可以避免铜冷却壁热变形过大导致的螺栓及冷却水管断裂破损问题.   相似文献   

17.
 铜冷却壁的应用大大提高了高炉的使用寿命。通过热态试验和数值模拟的方法来测试其热态性能。铜冷却壁热面复合传热系数值对于其温度场的模拟结果有重要影响。通过对铜冷却壁的传热过程分析,得到热面复合传热系数的计算公式。建立了高炉冷却壁热态试验系统,并在不同炉气温度和不同冷却水流速下进行了1∶1的铜冷却壁热态试验。根据热态试验结果,得到不同炉气温度下铜冷却壁热面复合传热系数值,该系数适用于相同试验条件下所有型号的铜冷却壁。  相似文献   

18.
 高炉铜冷却壁热面形成的渣皮是保障冷却壁寿命的关键。基于高炉中修,针对铜冷却壁热面的渣皮进行实地取样,通过化学成分分析、XRD分析以及SEM EDS分析,并结合FactSage热力学计算及激光法导热分析,对大型高炉铜冷却壁表面形成渣皮的化学成分、微观形貌、高温性能和导热性能进行系统研究,探明了大型高炉铜冷却壁热面渣皮的物相组成和基础性能。结果表明,高炉铜冷却壁渣皮具有明显的分层结构,主要物相为二铝酸钙(CaAl4O7)、硅灰石(Ca2Al2SiO7)和钙长石(CaAl2Si2O8)等;通过FactSage软件计算渣皮熔化温度和黏度,发现沿着渣皮的生长方向,熔化温度降低,流动性降低;并通过传热计算得出合理渣皮厚度条件下的热流强度,从而为高炉生产实践提供理论指导。  相似文献   

19.
采用ANSYS建立铜钢复合冷却壁的传热和热应力模型,分析稳定挂渣及渣皮脱落后的温度和热应力分布.结果表明,炉气温度是影响壁体温度、渣皮厚度、热负荷和应力状态的主要因素.在稳定挂渣时,铜壁最高温度为124℃,热负荷81.1 kW/m2,变形量比铜质冷却壁有所减少.在渣皮脱落后,铜壁温度和应力快速上升,5 min后趋向稳定.在冷却壁裸露的情况下,铜壁和钢板之间仍然保持牢固结合.  相似文献   

20.
薄 型 铜 冷 却 壁 的 热 性 能   总被引:1,自引:1,他引:0  
 为了降低高炉铜冷却壁的造价,开发了一种厚度为90 mm的薄型铜冷却壁。通过热态试验测量了高温下冷却壁的温度分布和冷面应变分布,通过数值模拟计算了冷却壁的温度场和应力应变场。热态试验和数值模拟结果符合较好。研究结果表明,薄型铜冷却壁能承受的最大热负荷为220 kW/m2,在高炉炉况下的基体温度以及由此产生的热应力都不足以使其破坏,满足长寿高炉的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号