首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
王亮  程树森  刘朋波  陈艳波 《钢铁》2022,57(1):48-56
 随着高品位铁矿石消耗的加快,资源逐渐趋于贫化,钢铁企业可利用的铁矿石原料逐渐向中低品位原料转变,尤其是高铝铁矿,这类原料的使用无疑会增加高炉渣中Al2O3质量分数,影响高炉现有的操作制度。Al2O3质量分数为15%~17%的高炉渣,由于Al2O3含量高而使高炉渣的冶金性能变差,为了保证高炉渣的冶金性能,必须在其中添加8%左右的MgO。然而,Al2O3含量相似的浦项钢铁的高炉渣,其MgO质量分数仅为4%左右,高炉实现了高效、稳定、顺行。因此,从高炉CaO-SiO2-Al2O3-MgO四元渣系的物理化学机理出发,研究了K2O、Na2O对高炉渣四元渣系CaO-SiO2-Al2O3-MgO中各组元活度的影响;研究了“渣-气”平衡条件下渣中碱金属氧化物和气体中碱金属的关系;计算了K2O、Na2O和MgO对黏度的影响。结果显示,在考虑高炉渣CaO-SiO2-Al2O3-MgO中各组元活度、碱金属在渣-气间的分布和炉渣黏度的情况下,当碱金属氧化物K2O和Na2O存在时,可以适当减小MgO含量,并可以保证高炉渣各组元活度及炉渣黏度基本不变。这不仅有助于减少高炉原料中添加含镁熔剂、提高原料品位、高效排碱、降低碱危害、减少碳排放、延长高炉寿命及降低成本,还能促进钢铁企业实现节能减排的目标。  相似文献   

2.
钢厂使用原保护渣[/%:25.64CaO,22.72SiO2,5.69MgO,8.29Al2O3,11.87(Na2O+K2O),5.49CaF2,5.10BaO]生产的300mm×360 mm低碳钢连铸坯表面易产生网状裂纹。通过分析保护渣润滑性能与铸坯冶金质量之相关性和研究碱度、MgO和Al2O3对保护渣熔点的影响,CaF2和碱土金属化合物含量对保护渣粘度影响,优化了保护渣的成分[/%:22.06CaO,23.63SiO2,4.76MgO,8.29Al2O3,11.90(Na2O+K2O),2.32CaF2,4.18BaO],应用结果表明,使保护渣液层的厚度由原保护渣的6~7.5 mm提高到7~10 mm,完全消除了连铸坯的网状裂纹。  相似文献   

3.
张芳  王艺慈  董方  张岩 《特殊钢》2010,31(4):28-30
用B2O3作为含氟渣中CaF2的替代熔剂,在保证两结晶器保护渣具有相近粘度和熔化温度的基础上,研究了成分为(%):31.1~35.5CaO、33.9~38.5SiO2、12Al2O3、3MgO、5Na2O、6~15CaF2的含氟结晶器保护渣和(%):33.5~35.5CaO、36.5~39.5SiO2、4Al2O3、5MgO、8~15Na2O、2Li2O、2~6B2O3的无氟结晶器保护渣的结晶温度、结晶能力以及对结晶器控制传热的影响。结果表明,8Na2O-6B2O3无氟渣与5Na2O-15CaF2的含氟渣有相近的粘度和熔化温度,并对结晶器控制传热有相似的作用。   相似文献   

4.
为了解决高铝矿高炉冶炼时炉渣流动性差、渣铁难分、软熔带透气性变差等问题,基于邯钢高炉炉渣成分变化区间,结合理论计算和试验,研究了Al2O3含量对炉渣成分、性能的影响,获得了炉渣中Al2O3质量分数为15%~18%时适宜的镁铝比(w(MgO)/w(Al2O3))和二元碱度调控区间,并将研究结果用于指导邯钢高炉高铝矿冶炼。研究结果表明,在Al2O3质量分数由15%增加到16%过程中,炉渣黏度随炉渣结构复杂化而逐渐增加,当温度为1 500℃时炉渣黏度一般小于0.4 Pa·s,不会影响高炉正常冶炼;当Al2O3质量分数由16%增加到17%时,由于炉渣结构不断复杂化以及高熔点镁铝尖晶石相的析出,造成炉渣黏度陡增,此时炉渣二元碱度为1.25~1.30,渣中镁铝比为0.4~0.6,能够保证邯钢2号、8号高炉的炉况稳定和冶炼指标。当Al2O3...  相似文献   

5.
郭江  李荣 《中国冶金》2020,30(12):18-21
为了明确B2O3对高Al2O3渣稳定性的影响,基于现场高炉渣的实际成分,通过熔体物性测定仪、扫描电镜、红外光谱仪分析了B2O3对高Al2O3渣黏度和基础玻璃微观结构的影响。结果表明,随着B2O3含量的增加,炉渣黏度降低;当炉渣温度低于1 360 ℃时,炉渣随着B2O3的增加稳定性增强;炉渣温度为1 216 ℃、B2O3质量分数为2.0%时,炉渣的稳定性最好。随着B2O3含量的增加,炉渣不断玻璃化,当B2O3质量分数为2.0%时,炉渣微观结构完全是玻璃态结构,表现为假性酸性渣的性质;随着B2O3含量的增加,[Si-O-Al]键断裂,[AlO6]八面体结构振动峰增加,炉渣的稳定性越来越好。  相似文献   

6.
黏度是冶金熔渣的基本物理性质,其大小直接影响到反应速率、熔渣分离效果等冶炼过程。通过深入探索熔渣黏度与其结构的关系,在分析熔渣黏度与其(NBO/T)比值(即单个聚合物粒子所拥有的非桥氧数量)相互关系的基础上,本文提出基于(NBO/T)比值的多元熔渣黏度计算模型。首先建立SiO2–∑MxO简单渣系的黏度计算模型,通过拟合纯氧化物和SiO2–MxO二元渣系的黏度数据得到模型参数,拟合平均误差在9%~18.5%之间;随后将该模型扩展至SiO2–Al2O3–∑MxO多元渣系的黏度计算,针对Al2O3在熔渣中同时表现出酸性氧化物和碱性氧化物的特点,在计算SiO2–Al2O3–MxO三元渣系黏度时,将其中的Al2O3拆分为酸性物质和碱性物质来计算(NBO/T)比值和黏度活化能。在SiO2–MxO二元系模型参数的基础上,通过拟合SiO2–Al2O3–MxO三元渣系的黏度数据得到含Al2O3渣系的模型参数,拟合平均误差在10%~25%之间。利用该模型计算了SiO2–Al2O3–CaO–MgO–FeO–Na2O–K2O–Li2O–BaO–SrO–MnO多元复杂渣系及其子体系的黏度值,计算平均误差在25%以内,取得了较好的预报效果。本模型基于熔渣结构理论,并借鉴了经验模型的数据处理方式,在预报效果和适用范围上都优于传统经验模型,在计算方式上比结构模型要简单。   相似文献   

7.
为明确转炉吹炼不同阶段炉渣黏流特性变化机理,结合不同时期典型的转炉炉渣成分,利用FactSage热力学模拟软件研究了碱度、FeO、MgO、MnO和Al2O3的变化对CaO-SiO2-FeO-MgO-MnO-Al2O3系转炉渣黏度的影响,并结合生产实际给出了转炉冶炼不同阶段适宜的炉渣碱度、炉渣中合理的FeO、MgO、MnO及Al2O3含量。研究结果表明,不同碱度条件下转炉渣黏度随温度升高而逐渐减小,不同温度条件下转炉渣黏度随碱度增大呈现先增大后减小的趋势。炉渣黏度受FeO、MgO和Al2O3含量变化影响较大,受MnO含量变化影响相对较小。炉渣流动性主要与炉渣结构的聚合度和渣中固相质量分数有关,FeO、MgO和Al2O3含量增加可以破坏渣中硅酸盐聚合体的网络结构,多余MgO易导致渣中高熔点固相析出;Al2O3...  相似文献   

8.
针对高炉炉渣中Al2O3含量(质量分数)偏高导致炉渣黏度增大、流动性变差、脱硫能力下降的问题,利用双层石墨坩埚模拟铁液滴下穿过炉渣的过程,探究了R[w(CaO)/w(SiO2)],w(MgO)/w(Al2O3)和w(Al2O3)对高Al2O3型CaO-SiO2-MgO-Al2O3四元高炉渣系脱硫能力的影响.当w(MgO)/w(Al2O3)=0.50,w(Al2O3)=20%时,R由1.05提高到1.35,炉渣的脱硫能力增强;当w(Al2O3)=20%,R=1.30时,w(MgO)/w(Al2O3)由0.25提高到0.55,炉渣的脱硫能力增强;当w(MgO)/w(Al2O3)=0.40,R=1.30时,w(Al2O3)由12%提高到20%,炉渣的脱硫能力下降.  相似文献   

9.
 基于混料试验中单纯形质心法建立了CaO-SiO2-Al2O3-MgO-2%TiO2渣黏度和熔化性能预测模型,利用预测模型、FactSage和X射线衍射(XRD)研究了不同w(Al2O3)含钛炉渣的冶金性能,并探讨了高Al2O3炉渣中w(MgO)/w(Al2O3)对黏度和熔化性能的影响。结果表明,炉渣黏度和熔化性能预测模型具有较高的精度,误差分别小于5%和2%。随着Al2O3质量分数由10%增加至18%,黏度(η)、熔化性温度(tM)和液相线温度(tL)均升高;低熔点相黄长石(Melilite)开始析出温度和析出量逐渐增大,高熔点相钙钛矿(CaTiO3)和低熔点相硅灰石(CaSiO3)开始析出温度先增大后减小,还析出了少量高熔点相尖晶石。当Al2O3质量分数小于15%、温度为1 450~1 525 ℃时,炉渣黏度均小于0.55 Pa·s,且温度为1 500 ℃时黏度为0.32~0.39 Pa·s,tMtL分别为1 370 ℃和1 330 ℃;Al2O3质量分数为15%~18%,炉渣析出的高熔点相CaTiO3和尖晶石较多,黏度对温度较为敏感,1 525 ℃时黏度为0.3 Pa·s左右,1 450 ℃时黏度增加至0.8 Pa·s。随着w(MgO)/w(Al2O3)由0.24增加至0.72,炉渣黏度降低,tMtL增大;Melilite开始析出温度约为1 425 ℃,CaTiO3开始析出温度由1 310 ℃大幅增加至1 394 ℃,CaSiO3析出量降低,尖晶石析出量明显增加。此外,不同w(Al2O3)和w(MgO)/w(Al2O3)炉渣基础相均为Melilite,其开始析出温度高于CaTiO3;w(Al2O3)对tM和Melilite开始析出温度影响显著,w(MgO)/w(Al2O3) 对tL和CaTiO3开始析出温度影响显著。当碱度为1.21时,高Al2O3炉渣适宜w(MgO)/w(Al2O3)为0.48~0.60,tMtL分别为1 400 ℃和1 340 ℃左右,炉渣流动性和稳定性较好。  相似文献   

10.
杨必文  王海北  郑朝振  陈亮  胡一航 《钢铁》2021,56(10):91-98
 为解决含钒钛铁水脱硫扒渣过程中炉渣黏稠、铁损大及后续回硫多等问题,运用FactSage热力学软件,结合高温试验,探究了B2O3+Na2O系调渣剂对钒钛铁水脱硫渣回硫、熔点及黏度的影响。结果表明,随着B2O3和Na2O加入,铁水脱硫渣熔点及黏度显著降低;调渣剂中添加CaO有助于抑制回硫。并提出了改善铁水脱硫渣性能的调渣剂配方(质量分数),即CaO 45%~55%、SiO2 10%~15%、Al2O3 5%~8%、B2O3 15%~20%、Na2O 5%~10%。调渣剂添加量为脱硫渣渣量的5%~10%时,能有效降低脱硫渣熔点和黏度,减少回硫。  相似文献   

11.
高钛焊丝钢连铸过程中结晶器内钢渣界面反应严重,首先对存在严重钢渣界面反应现象的A钢种进行了凝固特性分析。设计一种低反应性的高钛焊丝钢专用的CaO-Al2O3渣系保护渣。通过相图计算保护渣的基础组分w(CaO)/w(Al2O3)=1.0,Na2O质量分数为8%,MgO质量分数为3%,CaF2质量分数为4%~6%,B2O3质量分数为4%~10%,SiO2质量分数为4%~12%,TC质量分数为8%~10%。利用熔点熔速测定仪和旋转黏度计等设备重点研究了保护渣的熔化特性。得出适宜组分的CaO-Al2O3基高钛焊丝钢专用保护渣,熔点为1 037~1 129 ℃,熔速为64~79 s,黏度(1 300 ℃)为0.325~0.554 Pa·s。  相似文献   

12.
潘伟杰  李民  朱礼龙  何生平 《钢铁》2022,57(1):93-101
 在包晶钢连铸过程中,裂纹类缺陷频繁出现。生产实践表明,采用结晶性能较强的保护渣可以有效减少纵裂纹的发生,但会恶化保护渣的润滑功能。近年来,超高碱度保护渣由于兼具开始结晶温度低、结晶速率快的特点,可以成功协调包晶钢连铸过程中润滑与传热的矛盾。但在超高碱度条件下,有关组分对保护渣结晶性能的影响研究不多,且相应的熔渣结构特征也鲜有报道。Na2O作为保护渣中一种常见的组元,对调节保护渣性能具有重要作用。论文采用半球点熔化温度测试仪、旋转黏度计以及高温原位结晶性能测试仪分析了超高碱度下(综合碱度R=1.75)Na2O对连铸保护渣熔化流动特性以及凝固结晶性能的影响规律和作用机制。研究结果发现,随着Na2O含量增加,保护渣的黏度(1 300 ℃)、熔化温度、转折温度和结晶温度都呈下降趋势,结晶速率呈现先减小后增大的趋势,当Na2O质量分数为6%时结晶速率最低。此外,研究还发现超高碱度保护渣中主要析出相为枪晶石(Ca4Si2F2O7),随着Na2O含量进一步增加,渣中出现新的结晶相CaF2和Na2CaSiO4F。  相似文献   

13.
Al2O3是一种两性氧化物,在高碱度条件下呈现酸性氧化物特征,而在低碱度条件下表现出碱性氧化物的行为,是冶金熔渣中常见的一种组元。以超高碱度保护渣(综合碱度R=1.75)为研究对象,分析了Al2O3对保护渣流动特性、熔化特性和凝固特性的影响规律。研究结果显示:渣中Al2O3质量分数每增加1%,熔化温度上升5 ℃左右,转折温度下降12 ℃左右,开始结晶温度平均下降11 ℃左右。平均结晶速率随渣中Al2O3质量分数的增加而减小。且随着Al2O3质量分数的增加,保护渣结晶矿相中晶体比例逐渐降低,但晶体保持枪晶石的种类不变。   相似文献   

14.
对高铝无磁钢20Mn23AIV(/%:0.14~0.20C、21.50~25.00Mn、1.50~2.50Al、0.04~0.10V)200 mm板坯连铸过程结晶器保护渣液渣和渣圈的化学组成、理化性能和结晶矿相进行了对比分析。保护渣原渣组成为(/%):31.91CaO、30.30SiO2、6.58Al2O3、1.12MgO、3.02MnO、7.73Na20、7.10F。结果表明,连铸开浇后15 min,液渣和渣圈中的SiO2含量分别降低至22%和18%, Al2O3含量分别提高至20.5%和25.5%,其碱度由原渣的1.05分别提高至1.7和2.0。此时液渣及渣圈的熔化温度和粘度大幅度增加,转折温度大幅度降低;渣圈的化学成分及理化性能的变化幅度均大于液渣。连铸开浇15 min后液渣及渣圈的成分与性能均趋于稳定。高熔点相钙铝黄长石的析出是促使渣圈形成的重要原因。  相似文献   

15.
实验研究了结晶器保护渣(%:37CaO、2MgO、40SiO2、5Al2O3、5Na2O、11CaF2)在1 300-1 000℃的结晶过程和性能。结果表明,冷却速率≤2℃/s时,该渣的结晶化率达100%。在冷却速率0.1℃/s时,保护渣首先析出树枝状晶体,然后以片状晶体形态析出,直到结晶终止。通过X-射线衍射分析,得出析出的晶体主要有枪晶石(Ca4Si2O7F2)镁黄长石(Ca2MgSi2O7)、硅灰石(CaSiO3)及镁铝尖晶石(Al2MgO4)。  相似文献   

16.
研究了氟含量1.9%的保护渣系(%:27~30CaO、30~33SiO2、2~3Al2O3、2~3MgO、10~12R2O、1~2Fe2O3、4~5C粉、2Li2O、4CaF2、0~8B2O3)的理化性能。结果表明:随着渣中B2O3含量的增加,保护渣熔点、析晶温度、粘度均降低,但B2O3含量超过6%以后,对保护渣牯度几乎没有影响;B2O3含量为2%~4%时,表面张力较低,有利于结晶器内钢液中夹杂物的上浮排除,得到洁净铸坯。  相似文献   

17.
使用偏光显微镜,系统对比分析了邯郸钢厂超低碳钢SPHC(0.020%~0.055%C,70 mm板坯保护渣/%:33.14SiO2,3.86Al2O3,3.88MgO,31.52CaO,8.27K2O+Na2O,7.55F-1,3.93C)、包晶钢SS400(0.18%~0.22%C,70 mm板坯保护渣/%:29.62SiO2,4.63Al2O3,2.05MgO,35.86CaO,10.43 K2O+Na2O,7.55F-1,3.93C)和Ti微合金钢Q345B(0.15%~0.19C,0.04%~0.05%Ti,260 mm板坯保护渣/%:31.10SiO2,5.21Al2O3,5.07MgO,35.46CaO,6.22K2O+Na2O,6.96F-1,6.96C)对应的渣膜的矿相组成、结晶率和显微结构。结果表明,3种渣膜从铸坯至结晶器侧均呈现"结晶层-玻璃层"交替结构。SPHC钢渣膜有90%~95%的玻璃相,结晶相仅出现少量枪晶石,低结晶率有利于其润滑铸坯;SS400钢渣膜结晶率为55%~60%,析出较多的枪晶石和部分黄长石,有利于控制铸坯传热;Ti微合金钢Q345B渣膜结晶率略高于SS400钢,析出的黄长石、枪晶石和硅灰石能同时满足连铸对其润滑和控制传热的需求,可得到良好的铸坯质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号