首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
An assessment of state-of-the-practice at five full-scale North American landfills operating as bioreactors is presented in this two-paper set. This paper focuses on effectiveness of liners and leachate collection systems, leachate generation rates, leachate recirculation practices and rates, effectiveness in moistening the waste, and settlement of the waste over time. Except in one case, the liner and leachate collection systems at the bioreactor landfills were similar to those used for landfills operated conventionally. Leachate generation rates increased approximately linearly with recirculation rate, but in all cases, the leachate generation rate was <300?L/m2?year. Leachate depths generally were maintained within regulatory requirements, even with the highest recirculation rates. Leakage rates from liners at bioreactor landfills, including alternative liner designs employing geosynthetic clay liners, are comparable to leakage rates from conventional landfills. Thus, based on the information gathered in this study, additional requirements or features for liners or leachate collection systems are not warranted for bioreactor landfills. Diminishing capacity of horizontal recirculation trenches is common. Experience at one landfill suggests that small doses at high frequency under substantial injection pressure can deter loss of trench capacity. Only those landfills that were aggressive in recirculation had achieved water contents near the field capacity. Increasing the amount of liquid that is added may be required to achieve field capacity at some landfills, particularly if a final cover is placed soon after waste grades are reached. The rate of time-dependent waste settlement attributed to biodegradation is about 1.6 times larger in bioreactor landfills than in conventional landfills, and increases as the recirculation dosage increases.  相似文献   

2.
Four pilot-scale lysimeters were used to study the benefits of landfill operation with and without leachate recirculation in tropical weather conditions. Young and old landfills were simulated by filling lysimeters with a segregated fraction of fresh municipal solid waste (MSW) and MSW mined from an open dump site, respectively, and periodically monitoring leachate quantity and quality and biogas quality. For each substrate, one lysimeter was operated as a bioreactor with leachate recirculation and another lysimeter was operated as a controlled dump, for a period of 10 months. Densities between 652 and 825??kg/m3 could be achieved with fresh and mined MSW. Despite such compaction during waste placement, bioreactor technology helps in leachate management, especially in the case of the young landfill lysimeter operated in tropical weather. The benefits of leachate recirculation in the young landfill lysimeter were evident from the significant decrease in chemical oxygen demand (COD) (86%), biochemical oxygen demand (BOD) (82%), dissolved organic carbon (DOC) (85%), and volatile solids (75%) in leachates. However, ammonia nitrogen (amm-N) and chlorides in the leachates accumulated in bioreactor landfills. Operating an old landfill lysimeter as a bioreactor seemed to have no exceptional advantage in the context of leachate management, although leachate recirculation enhanced the methane potential of both fresh and mined MSW.  相似文献   

3.
Landfilling costs and the potential uses of scrap tires have prompted researchers to investigate beneficial reuses. One important application is the use of tire chips as a leachate collection material in municipal solid waste landfills. Laboratory and field studies were conducted to investigate the performance of tire chips as a drainage medium in landfills. The laboratory portion of the program included a series of hydraulic conductivity and compressibility tests. Two field test cells, one with tire chips and another with gravel as the control, were constructed. The tire-chip cell was instrumented with flowmeters, thermistors, and gas collection devices to evaluate the hydraulic performance as well as the potential for spontaneous combustion. Leachate collected from the two cells was analyzed to determine if tire chips would potentially contaminate the groundwater. The results indicated that adequate drainage conditions were present within the tire-chip layer. The presence of insignificant quantities of carbon monoxide, and the lack of oxygen, and recorded low temperatures suggested that a combustion hazard was not present. The field leachate data indicated that tire chips can be safely used as part of a landfill leachate collection layer, even though it may not be suitable to place them near drinking water sources.  相似文献   

4.
Extraction of biogas from horizontal layers above, below, and within municipal solid waste landfills is becoming more commonplace. A steady-state one-dimensional analytical landfill gas model was developed to assist in the assessment and design of such collection systems. The model simulates the distribution of gas pressure within a layer of landfill waste under a variety of operating conditions that include upper and lower boundaries specified at given fluxes or pressures. The model can be used to predict where maximum pressures will build up within the landfill and what vacuum pressures must be applied to achieve specific gas collection efficiency in a horizontal collection layer. The utility of the model was illustrated for several scenarios of interest. In the absence of gas collection from a landfill’s leachate collection system, considerable gas pressures can build up at the bottom of the landfill. The design of leachate collection systems for landfill gas removal should be considered from the outset. An evaluation of the parameters that impact vacuum requirements—waste depth, gas generation rate, and waste permeability—suggests that it may not be feasible to rely solely upon the leachate collection system for the removal of landfill gas. The model was thus used to illustrate cases where a horizontal collection layer underneath the landfill cap is used in conjunction with gas extraction from the bottom of the landfill. Several recommendations are proposed to improve the gas collection efficiencies for landfills utilizing horizontal gas collection layers.  相似文献   

5.
The key purpose of this study was to test the use of a permeable blanket made up of a geocomposite drainage layer (GDL) for leachate recirculation in municipal solid waste (MSW) landfills and to predict the observed leachate travel in the blanket using a numerical model. A 34?m long by 12?m wide permeable blanket made up of GDL was constructed at an active MSW landfill located in Michigan. Leachate was injected in the GDL using a perforated pipe placed centrally above the GDL along its length. Moisture content sensors, pressure transducers, thermistors, thermocouple sensors, and a vertical load sensor were embedded immediately below the GDL blanket to monitor the flow of injected leachate. After the blanket was covered with waste, leachate was injected into the blanket at rates ranging from 0.9 to 2.6?m3/h per meter length of the blanket. Data collected from the embedded sensors indicated that the injected leachate traveled at rates ranging from 5 to 18?m/h through the blanket depending upon the leachate injection rate. Only pressure transducers and thermistors were consistently able to detect migration of injected leachate once the blanket got saturated. Moisture content sensors could not register any change in readings once the blanket became saturated. Leachate injection pressure monitored over a period of about 12 months indicated no signs of clogging of the blanket. The leachate pressures measured immediately below the blanket were less than the net leachate injection pressure indicting that there was a head loss in the GDL blanket. Numerical modeling of liquid flow in the blanket indicated that predicted leachate travel in the blanket was consistent with the field data for assumed values of the waste hydraulic conductivity. In the absence of measured representative hydraulic properties of the waste, absolute verification of the field data was not possible.  相似文献   

6.
Subsurface leachate recirculation or liquid injection methods for municipal solid waste (MSW) landfills are horizontal trenches, vertical wells, and permeable blankets. In this study, results of field-scale testing and numerical modeling of a recently developed subsurface leachate recirculation system called permeable blankets have been presented. In the field, at a MSW landfill located in Michigan, the travel of injected leachate in a 60-m-wide by 9-m-long by 0.15-m-deep blanket made up of crushed recycled glass was measured using an automated sensing system consisting of sensors embedded in the blanket. Leachate injection rates used in the field and simulated in this study ranged from 1.1 to 3.6?m3/h per meter length of the injection pipe embedded in the permeable blanket. HYDRUS-2D was used to simulate the travel and pressure head of injected leachate in permeable blankets. The influence of the following parameters on the hydraulic performance of permeable blankets was evaluated: (1) hydraulic properties of permeable blanket and waste; (2) geometry of permeable blanket; (3) settlement of permeable blanket; (4) leachate dosing frequency; and (5) initial degrees of saturation of permeable blanket and waste. The key findings of the study are: (1) the rate and maximum distance of travel of injected leachate are a strong function of the relative hydraulic properties of the permeable blanket and underlying waste and the rate and frequency of leachate injection; and (2) the maximum pressure head in the blanket due to liquid injection does not exceed the injection pressure. The field data and the numerical modeling results indicated that permeable blankets can be designed to inject liquids or recirculate leachate in MSW landfills. Long-term performance of such blankets needs to be evaluated.  相似文献   

7.
A common failure mode for landfills is clogging of the leachate-collection system. The reduction in hydraulic conductivity associated with clogging causes a buildup of leachate head on the underlying liner, potentially increasing advective contaminant transport from the landfill and contaminating adjacent groundwater. In this paper, the biogeochemical model CCBATCH is used to link a primary cause of leachate collection system failure—CaCO3(s) precipitation?to anaerobic degradation of volatile fatty acids (VFAs) in column reactors used to study the clogging phenomena. One key to applying CCBATCH correctly was dividing the VFA conversion into two steps: conversion of propionate to acetate, carbonic acid, and methane; and acetate conversion to methane and carbonic acid. The primary driver for CaCO3(s) precipitation in the columns was acetate fermentation to CH4 and H2CO3, which increased the total carbonate concentration in the leachate and shifted the acid/base control to a weaker acid system, which caused an increase in solution pH. A second key to proper modeling was adding CO2(g) gas transfer to CCBATCH. The modeling results indicate that the kinetics of CO2(g) gas transfer was a key control over leachate chemistry once acetate fermentation was nearly complete. These results suggest that the best approach for the long-term control of CaCO3(s) clogging may be to enhance CO2(g) gas transfer from the leachate while buffering the leachate pH to near neutral. Taken together, these actions should decrease the yield of CaCO3(s) precipitated per mass of acetate removed.  相似文献   

8.
Pressure-treated wood is often disposed of in landfills in the United States, very frequently in construction and demolition (C&D) debris landfills. C&D debris landfills in many states are not equipped with liner systems to protect groundwater. With the voluntary withdrawal of chromated copper arsenate (CCA) treated wood for most residential applications in January 2004, copper-based wood preservatives, including alkaline copper quaternary (ACQ), are more widely used. To evaluate the impact of metal losses from ACQ-treated wood disposed in C&D debris landfills and compare to those of CCA-treated wood under similar conditions, leachates from three simulated C&D debris landfills (lysimeters) were collected and analyzed for over a period of one year. The wood component in one lysimeter (the control lysimeter) contained pallet wood; the second lysimeter contained CCA-treated wood, and the third contained ACQ-treated wood. Each lysimeter was buried in an active landfill for temperature control. Several batch leaching tests [including the standardized toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP)] were also conducted for comparison purposes. Although the two lysimeters containing treated wood had elevated copper concentrations within the waste matrix, the concentration in the leachate samples from these lysimeters was below detection for Cu (<4?μg/L) throughout the duration of the experiment, likely a result of precipitation as copper sulfide mineral in the reducing conditions of the simulated C&D landfills. As expected, the lysimeter containing CCA-treated wood showed elevated concentrations of arsenic and chromium, with maximum concentrations of 1.16 mg/L and 0.2 mg/L respectively. Greater amounts of boron (B) leached from ACQ-treated wood than CCA-treated wood or pallet wood debris. The results suggest that copper leaching will not be a major concern upon the disposal of ACQ-treated wood in C&D debris landfills. Arsenic leaching from CCA-treated wood remains a concern for unlined C&D debris landfills.  相似文献   

9.
Solid waste produced from construction and demolition (C&D) activities is typically disposed of in unlined landfills. Knowledge of C&D debris landfill leachate is limited in comparison to other types of wastes. A laboratory study was performed to examine leachate resulting from simulated rainfall infiltrating a mixed C&D waste stream consisting of common construction materials (e.g., concrete, wood, drywall). Lysimeters (leaching columns) filled with the mixed C&D waste were operated under flooded and unsaturated conditions. Leachate constituent concentrations in the leachate from specific waste components were also examined. Leachate samples were collected and analyzed for a number of conventional water quality parameters including pH, alkalinity, total organic carbon, total dissolved solids, and sulfate. In experiments with the mixed C&D waste, high concentrations of total dissolved solids (TDS) and sulfate were detected in the leachate. C&D leachates produced as a result of unsaturated conditions exhibited TDS concentrations in the range of 570–2,200 mg∕L. The major contributor to the TDS was sulfate, which ranged in concentration between 280 and 930 mg∕L. The concentrations of sulfate in the leachate exceeded the sulfate secondary drinking water standard of 250 mg∕L. The leachate produced from lysimeters exposed to conditions of constant flooding possessed a greater concentration of dissolved constituents than leachate from the unsaturated lysimeters. The sulfate concentration ranged from 950 to 1100 mg∕L. In both scenarios, the primary ions contributing to the dissolved solids were sulfate and calcium, both a result of gypsum drywall. The flooded lysimeters remained at a constant pH of 11 throughout the experiment, whereas the pH dropped to neutral conditions (pH 6–7) in the unsaturated columns after 1 month of the leaching experiment. The high pH of leachate from the flooded columns was attributed to concrete. Based on leaching tests on individual waste components, wood and cardboard were the primary materials contributing to dissolved organic carbon. The organic carbon concentrations in the leachate were generally lower than typical municipal waste leachate. The biological conversion of sulfate to sulfide was evident in many columns, and was most pronounced in the unsaturated, mixed-waste columns.  相似文献   

10.
Experimental results from physical testing are reported to examine the thickness and hydraulic performance of three geosynthetic clay liners (GCLs) overlying a geonet when subjected to vertical stresses (e.g., as may be found in a secondary leachate collection layer or hydraulic control layer in solid waste landfills). The GCL was found to intrude into the underlying geonet and the effects of GCL type and water content, temperature, applied pressure, and test duration on the final GCL thickness are examined. The results are consistent with GCL deformation from the beneficial consolidation of bentonite as opposed to lateral extrusion of bentonite. Results from fixed ring flow tests suggest that the indentations in the GCL caused by intrusion into the underlying geonet do not appear to negatively impact the hydraulic performance (permittivity or resistance to internal erosion) of the particular GCLs tested for the conditions examined. The flow capacity of the geonet in these tests was found to depend not only on the amount of GCL intrusion but also on the orientation of the geonet relative to the flow direction.  相似文献   

11.
Gas collection systems of various designs have been used to control landfill gas emissions, which can be problematic, particularly before installation of final landfill covers. In this work, an innovative gas collection system that includes a permeable layer near the top surface of landfills was evaluated for enhancing capture of landfill gas and reducing fugitive methane emissions. A computational model that accounts for advective and diffusive fluxes of multiple gas components was used to evaluate the efficiency of this new design for intermediate landfill covers. The utility of the high-permeability gas-conductive layer was illustrated for several conditions of interest including varying refuse permeability, varying degrees of permeability anisotropy, and temporal atmospheric pressure changes. Simulations showed that the permeable layer decreased methane emissions by 43% when the horizontal to vertical permeability ratio for refuse was kh/kv = 3 and the domain average kh = 3×10?12?m2, while reductions in methane emissions decreased to 17% for the same anisotropy but with kh = 10?11?m2. With this design, barometric pressure changes did not significantly affect oxygen intrusion or methane emission rates.  相似文献   

12.
Treatment of Leachate by Aged-Refuse-based Biofilter   总被引:1,自引:0,他引:1  
Refuse in landfills becomes stabilized or aged, as organic matter in the refuse gradually degrades and as the soluble inorganic substances dissolve during its long-term stabilization process. Within this paper, this process is referred to as mineralization and the resultant stabilized or essentially stabilized refuse is referred to as “aged refuse.” The aged refuse contains a wide spectrum and large quantity of microorganisms, which have a strong decomposition capability for refractory organic matter present in some wastewaters, such as leachate. In this study, aged refuse excavated from two to ten year old closed landfill compartments in Shanghai Refuse Landfill (SRL) was characterized in terms of particulate distribution by screening, and a biofilter consisting of ten year old aged refuse was then used for biofiltration of leachate sampled from the landfill. Typically, 400 kg of screened aged refuse with limiting diameter less than 15 mm was used as biofiltration materials in a round shaped biofilter with 80 cm inner diameter and 80 cm height. Leachate with initial chemical oxygen demand (COD), biological oxygen demand (BOD), and NH3–N concentrations of 3,000–7,000, 540–1,500, and 500–800 mg/L, respectively, was passed through the biofilter. As a result, the corresponding concentrations in the effluent were reduced to lower than 100–350, 10–200, and 10–25 mg/L, respectively, 90–99% removal for these parameters at a hydraulic load of 80–200 L/m3 refuse/day. The color of the effluent became slightly gray, in comparison with the heavy brownish color of the influent. The treatment efficiencies heavily depend on hydraulic load, BOD/COD ratios in the leachate, and preliminary treatment of the aged refuse. A variety of leachates with various BOD/COD ratios was tested. It was found that the effluent deteriorated when BOD/COD ratios were lower than 0.1–0.2. Increase of hydraulic load resulted in a decrease of removal efficiencies. Removal of stone, plastics, and glass, etc., from the aged refuse improved the treatment. A pilot test was conducted at SRL and the experimental results obtained at laboratory scale were verified.  相似文献   

13.
A microbial dissolved oxygen (DO) uptake model was developed for a stream bed, including the effect of turbulence in the flow over the bed and pore water flow in the porous bed. The fine-grained sediment bed has hydraulic conductivities 0.01 ≤ k ≤ 1??cm/s, i.e., sediment particle diameter 0.006 ≤ ds ≤ 0.06??cm. The pore water flow is driven by pressure fluctuations at the sediment-water interface, mostly attributable to near-bed coherent motions in the turbulent boundary layer above the sediment bed. An effective mass transfer coefficient (De) coupled to a pore water flow model was used in the DO transport and DO uptake model. DO flux across the sediment-water interface and into the sediment, i.e., sedimentary oxygen demand (SOD), was related to hydraulic conductivity and microbial oxygen uptake rate in the sediment and shear velocity at the sediment-water interface. Simulated SOD values were validated against experimental data. For hydraulic conductivities of the sediment bed up to k ≈ 0.01??cm/s, the pore water flow effect on SOD was found negligible. Above this threshold, the effective mass (DO) transfer coefficient in the sediment bed (De) becomes larger as the hydraulic conductivity (k) becomes larger as the interstitial flow velocities increase; consequently, DO penetration depth increases with larger hydraulic conductivity of the sediment bed (k), and SOD increases as well. The enhancement of vertical DO transport into the sediment bed is strongest near the sediment-water interface, and rapidly diminishes with depth into the sediment layer. An increase in shear velocity at the sediment-water interface also enhances DO transfer. Shear velocity increases at the sediment-water interface will raise SOD regardless of the maximum oxidation rate if the hydraulic conductivity is above the threshold of k ≈ 1??cm/s. The relationship is nearly linear when U*<0.8??cm/s. At shear velocity U* = 1.6??cm/s, SOD for oxidation rates μ = 1000 and 2000??mg?l-1?d-1 are almost five times larger than those with no pore water flow. When pore water transport of DO is not limiting, SOD is a linear function of oxygen demand rate μ in the sediment when 0 ≤ μ ≤ 200??mg?l-1?d-1.  相似文献   

14.
Scrap tire disposal is a problem of growing concern. One solution to this problem is innovative methods for the reuse and recycling of scrap tires. Based on batch isotherm tests, scrap tire chips have been identified to be good sorbents of volatile organic compounds (VOCs) and could be used as leachate drainage layer material in solid waste landfills and in other similar applications. To demonstrate the effects of tire chips on the leachate they come in contact with in a drainage layer over a liner, large-scale tank tests simulating the drainage layer and the clay liner and also field tests were performed. Two cells were constructed in a landfill: one with scrap tire chips and the other with gravel leachate collection layer. According to the results of the large-scale tank tests and field tests, shredded tire chips have a significantly positive impact on the quality of the leachate with which they come in contact. The use of scrap tires in landfills would reduce the magnitude of the current tire disposal problem (a 1 ha landfill requires approximately 300,000 tires to fill 0.3 m of a leachate collection layer) and convert one waste into a beneficial construction material and simultaneously mitigate the problem of VOC transport from through landfill liners.  相似文献   

15.
Solid waste from construction and demolition (C&D) activities is often disposed in unlined landfills. Leachate from unlined landfills poses a potential risk to groundwater quality. An understanding of the types of chemical constituents likely to be encountered in C&D waste landfill leachate and the concentrations at which they occur help assess this risk. An experiment was performed to characterize leachate from land-disposed residential construction waste. Four 54 m2 (580 ft2) test cells were excavated, lined, and filled with waste. Leachate samples were collected and analyzed for a number of water quality parameters over a 6 month period. No volatile or semivolatile organic compounds were detected at elevated constituent levels in the leachate. Inorganic ions were found to account for the bulk of the pollutant mass leached. Calcium and sulfate were the predominant ions in the leachate, resulting from the dissolution of gypsum drywall. The concentrations of several leachate constituents were found to exceed water quality standards. These constituents included aluminum, arsenic, copper, manganese, iron, sulfate, and total dissolved solids. Arsenic was the only primary water quality standard exceeded. The arsenic was concluded to result from chromated copper arsenate (CCA)-treated wood. The potential risk of impacting groundwater was examined by comparing the measured constituent concentrations with the water quality standards to assess the amount of dilution and attenuation needed in the groundwater so that a water quality standard would not be exceeded. The water quality standard exceeded by the greatest magnitude was manganese, followed by iron.  相似文献   

16.
Waste acclimation and batch microcosm studies containing digested municipal solid waste were conducted at different temperatures (22, 35, and 45°C) and gas-phase oxygen concentrations (0.7–100%, by volume) to provide guidance for field-scale implementation of in situ nitrogen removal processes. Results demonstrate that in situ ammonia–nitrogen is feasible in decomposed aerated solid waste environments at the gas-phase oxygen concentrations and temperatures evaluated and the potential for simultaneous nitrification and denitrification in field-scale bioreactor landfills is significant due to the presence of both aerobic and anoxic areas. Small amounts of oxygen were found sufficient for nitrification/ammonia removal to proceed, although removal rates increase with oxygen concentration. Laboratory results suggest field-scale implementation of in situ nitrogen removal occur in small dedicated treatment zones containing previously degraded waste (later in the life of a bioreactor landfill). Model simulations indicate removal of ammonia–nitrogen to low levels can occur with relatively short aeration depths (depth estimates ranged from 1.6 to 7.2?m below the point of leachate injection). Field-scale verification of these depth estimates is required prior to routine acceptance.  相似文献   

17.
Phenolic composition, toxicity and biodegradability of three different phenolic leachates/samples was studied. Samples A and C were the leachates from the oil-shale industry spent shale dumps at Kohtla-J?rve, Estonia. Sample B was a laboratory-prepared synthetic mixture of 7 phenolic compounds mimmicking the phenolic composition of the leachate A. Toxicity of these 3 samples was analyzed using two photobacterial test (BioTox and Microtox), Daphnia test (DAPHTOXKIT F pulex) and rotifiers' test (ROTOXKIT F). All the LC50 values were in the range of 1-10%, leachate A being the most toxic. The growth and detoxifying potential (toxicity of the growth medium was measured using photobacterial tests) of 3 different phenol-utilizing bacteria and acclimated activated sludges was studied in shake-flask cultures. 30% leachate A (altogether 0.6 mM total phenolic compounds) was too toxic to rhodococci and they did not grow. Cell number of Kurthia sp. and Pseudomonas sp. in 30% leachate A increased by 2 orders of magnitude but despite of the growth of bacteria the toxicity of the leachate did not decrease even by 7 weeks of cultivation. However, if the activated sludge was used instead of pure bacterial cultures the toxicity of the 30% leachate A was eliminated already after 3 days of incubation. 30% samples B and C were detoxified by activated sludge even more rapidly, within 2 days. As the biodegradable part of samples A and B should be identical, the detoxification of leachate A compared to that of sample B was most probably inhibited by inorganic (e.g. sulphuric) compounds present in the leachate A. Also, the presence of toxic recalcitrant organic compounds in the leachate A (missed by chemical analysis) that were not readily biodegradable even by activated sludge consortium should not be excluded.  相似文献   

18.
Clogging of Gravel Drainage Layers Permeated with Landfill Leachate   总被引:2,自引:0,他引:2  
Ten flow cells, called mesocosms, are used to investigate the effect of different gravel sizes (38 and 19?mm) and operating conditions on clogging of leachate collection systems. These mesocosms simulated in real time and real scale the two-dimensional leachate flow conditions representative of a section of a continuous 300-mm-thick gravel drainage blanket adjacent to a leachate collection pipe in a primary leachate collection system. The tests were terminated after 6–12?years of operation. In some mesocosms the full 300?mm of gravel was saturated. In others, the leachate level was initially set at 100?mm and the upper 200?mm were unsaturated. Although the flow through all mesocosms was similar, the clogging in the fully saturated gravel was substantially more than in the partially saturated gravel. After 6?years of operation, typically, less than 10% of the initial pore space was filled with clog material in the unsaturated gravel. For the saturated zone, 45% of the initial pore space was filled with clog material in the fully saturated design as compared to only 31% in the partially saturated design. The 38?mm gravel performed much better than the 19?mm gravel. For example, it maintained a hydraulic conductivity that was higher than the 19?mm gravel even after operating for twice as long. Up to four mesocosms were placed in series, with the effluent from one mesocosm being the influent for another. The reduction in mass loading within the first mesocosm reduced the amount of clogging within the mesocosm later in series. There was a clear progression of decreasing amounts of initial pore space filled with clog material in the last mesocosm in series, and most of the clogging was due to the vertically percolating leachate.  相似文献   

19.
Abandoned coal ash ponds cover up vast stretches of precious land and cause environmental problems. Application of suitable in situ stabilization methods may bring about improvement in the geotechnical properties of the ash deposit as a whole, converting it to a usable site. In this study, a technique of in-place stabilization by hydrated lime columns was applied to large-scale laboratory models of ash ponds. Samples collected from different radial distances and different depths of the ash deposit were tested to study the improvements in the water content, dry density, particle size distribution, unconfined compressive strength, pH, hydraulic conductivity, and leachate characteristics over a period of one year. The in-place stabilization by lime column technique has been found effective in increasing the unconfined compressive strength and reducing hydraulic conductivity of pond ash deposits in addition to modifying other geotechnical parameters. The method has also proved to be useful in reducing the contamination potential of the ash leachates, thus mitigating the adverse environmental effects of ash deposits.  相似文献   

20.
The estimation of the capacity and settlement of landfills is critical to successful site operation and future development of a landfill. This paper reports the results of a study on biodegradation behavior and the compression of municipal solid wastes. An experimental apparatus was developed which had a temperature-control system, a leachate recycling system, a loading system, and a gas and liquid collection system. Experiments were performed both with and without optimal biodegradation for comparative purposes. Test results indicated that settlement resulting from creep was relatively insignificant when the biodegradation process was inhibited. Compression due to decomposition under optimal biodegradation conditions was found to be much larger than compression associated with creep. The biodegradation process was significantly influenced by the operational temperature. A one-dimensional model is proposed for calculating settlement and estimating the capacity of the landfill under relatively optimal biodegradation conditions. The model was developed to accommodate the calculation of settlement in landfills when a multistep filling procedure was used. The calculation method is relatively simple and convenient for design purposes. Simulations of the physical processes showed that enhancing solid waste biodegradation during the filling stage can considerably increase the capacity of the landfill and reduce postclosure settlements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号