首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 462 毫秒
1.
Human vestibuloocular reflex and its interactions with vision and fixation distance during linear and angular head movement. J. Neurophysiol. 80: 2391-2404, 1998. The vestibuloocular reflex (VOR) maintains visual image stability by generating eye movements that compensate for both angular (AVOR) and linear (LVOR) head movements, typically in concert with visual following mechanisms. The VORs are generally modulated by the "context" in which head movements are made. Three contextual influences on VOR performance were studied during passive head translations and rotations over a range of frequencies (0.5-4 Hz) that emphasized shifting dynamics in the VORs and visual following, primarily smooth pursuit. First, the dynamic characteristics of head movements themselves ("stimulus context") influence the VORs. Both the AVOR and LVOR operate with high-pass characteristics relative to a head velocity input, although the cutoff frequency of the AVOR (<0.1 Hz) is far below that of the LVOR ( approximately 1 Hz), and both perform well at high frequencies that exceed, but complement, the capabilities of smooth pursuit. Second, the LVOR and AVOR are modulated by fixation distance, implemented with a signal related to binocular vergence angle ("fixation context"). The effect was quantified by analyzing the response during each trial as a linear relationship between LVOR sensitivity (in deg/cm), or AVOR gain, and vergence (in m-1) to yield a slope (vergence influence) and an intercept (response at 0 vergence). Fixation distance (vergence) was modulated by presenting targets at different distances. The response slope rises with increasing frequency, but much more so for the LVOR than the AVOR, and reflects a positive relationship for all but the lowest stimulus frequencies in the AVOR. A third influence is the context of real and imagined targets on the VORs ("visual context"). This was studied in two ways-when targets were either earth-fixed to allow visual enhancement of the VOR or head-fixed to permit visual suppression. The VORs were assessed by extinguishing targets for brief periods while subjects continued to "fixate" them in darkness. The influences of real and imagined targets were most robust at lower frequencies, declining as stimulus frequency increased. The effects were nearly gone at 4 Hz. These properties were equivalent for the LVOR and AVOR and imply that the influences of real and imagined targets on the VORs generally follow low-pass and pursuit-like dynamics. The influence of imagined targets accounts for roughly one-third of the influence of real targets on the VORs at 0.5 Hz.  相似文献   

2.
Our capacity to detect spatial misalignments a fraction of the distance between retinal receptors in the presence of image motion challenges our understanding of spatial vision. We find that vernier acuity, while robust to image translation, rapidly degrades during image rotation. This indicates that orientation is a critical cue utilized by the visual system in vernier acuity tasks. Moreover, vernier acuity is robust to translational motion only at high target strengths. Vernier acuity for translating 3-dot targets over midrange velocities can be predicted from vernier acuity data derived from static targets of different presentation durations. However, the degradation observed at higher velocities is greater than predicted. The high velocity degradation reveals that performance is limited by a 1 msec asynchrony sensitivity. The moving vernier stimulus appears to constitute an optimal configuration for the visual system to achieve a 1 msec asynchrony sensitivity by making use of an orientation cue.  相似文献   

3.
According to Einstein's equivalence principle, inertial accelerations during translational motion are physically indistinguishable from gravitational accelerations experienced during tilting movements. Nevertheless, despite ambiguous sensory representation of motion in primary otolith afferents, primate oculomotor responses are appropriately compensatory for the correct translational component of the head movement. The neural computational strategies used by the brain to discriminate the two and to reliably detect translational motion were investigated in the primate vestibulo-ocular system. The experimental protocols consisted of either lateral translations, roll tilts, or combined translation-tilt paradigms. Results using both steady-state sinusoidal and transient motion profiles in darkness or near target viewing demonstrated that semicircular canal signals are necessary sensory cues for the discrimination between different sources of linear acceleration. When the semicircular canals were inactivated, horizontal eye movements (appropriate for translational motion) could no longer be correlated with head translation. Instead, translational eye movements totally reflected the erroneous primary otolith afferent signals and were correlated with the resultant acceleration, regardless of whether it resulted from translation or tilt. Therefore, at least for frequencies in which the vestibulo-ocular reflex is important for gaze stabilization (>0.1 Hz), the oculomotor system discriminates between head translation and tilt primarily by sensory integration mechanisms rather than frequency segregation of otolith afferent information. Nonlinear neural computational schemes are proposed in which not only linear acceleration information from the otolith receptors but also angular velocity signals from the semicircular canals are simultaneously used by the brain to correctly estimate the source of linear acceleration and to elicit appropriate oculomotor responses.  相似文献   

4.
We studied anticipatory postural adjustments contributing to gait initiation deficits in patients with Parkinson's disease (PD) to determine if these deficits could be improved by administration of levodopa or by external stimuli. Ground reaction forces and body kinematics were recorded for self-generated and cutaneous cue-triggered step initiation in normal subjects and in PD subjects when OFF and when ON. The effects of assisting anticipatory postural sway with a surface translation coupled with a cutaneous cue were also examined. Decreased force production, decreased velocity of movement, and slowed execution of the anticipatory postural adjustments for self-generated step characterized step initiation in PD subjects when OFF. These impairments were significantly less evident when the PD subjects were ON. Both PD and normal subjects increased force and velocity of movement when a cutaneous cue was used as a go signal. When subjects voluntarily initiated a step in response to the surface translation, both PD and normal subjects executed the anticipatory postural adjustments for step more rapidly, but the PD subjects, both ON and OFF, failed to increase force to execute push-off more rapidly. In conclusion, dopaminergic therapy and an external stimulus similarly improve the deficient force production for the anticipatory postural adjustments associated with step initiation in PD. The findings also suggest that force production during the postural adjustment phase of self-generated, but not externally triggered, step initiation is influenced by dopaminergic pathways.  相似文献   

5.
Saccadic and smooth eye movements are controlled by separate mechanisms within the nervous system. We describe a patient with familial ataxia, considered to be a form of olivopontocerebellar degeneration, who is incapable of generating reflex or voluntary saccades. She can, however, move her eyes smoothly to the normal limits of lateral gaze, even when her head is prevented from moving. Latency before onset of movement is prolonged, and the velocity of movement is abnormally slow. We postulate that the degenerative process may have affected selectively those cells of the ventral paramedian pontine tegmentum responsible for the generation of saccades; and the the prolonged latency from presentation of a visual stimulus to the onset of movement is related to an inability to generate burst discharges needed to overcome the viscoelastic properties of the orbital tissues.  相似文献   

6.
HE Strassler  SE Syme  F Serio  JM Kaim 《Canadian Metallurgical Quarterly》1998,19(6):595-8, 600, 602 passim; quiz 612
The practice of dentistry involves viewing and evaluating small details of teeth, soft tissues, restorations, casts, and instruments. Although normal vision often is adequate to view details to make treatment decisions, the use of magnification loupes provides the clinician with an increased image size for improved visual acuity and improved posture while practicing. There are many choices when selecting a magnifying system. This article recommends the use of a binocular surgical telescope, either a flip-up type or a fixed-lens system, because it affords the clinician more choices in power of magnification, working distance, field of view, depth of field, and working angulation for improved posture.  相似文献   

7.
The vestibulo-ocular reflex (VOR) generates compensatory eye movements in response to angular and linear acceleration sensed by semicircular canals and otoliths respectively. Gaze stabilization demands that responses to linear acceleration be adjusted for viewing distance. This study in humans determined the transient dynamics of VOR initiation during angular and linear acceleration, modification of the VOR by viewing distance, and the effect of unilateral deafferentation. Combinations of unpredictable transient angular and linear head rotation were created by whole body yaw rotation about eccentric axes: 10 cm anterior to eyes, centered between eyes, centered between otoliths, and 20 cm posterior to eyes. Subjects viewed a target 500, 30, or 15 cm away that was extinguished immediately before rotation. There were four stimulus intensities up to a maximum peak acceleration of 2,800 degrees/s2. The normal initial VOR response began 7-10 ms after onset of head rotation. Response gain (eye velocity/head velocity) for near as compared with distant targets was increased as early as 1-11 ms after onset of eye movement; this initial effect was independent of linear acceleration. An otolith mediated effect modified VOR gain depending on both linear acceleration and target distance beginning 25-90 ms after onset of head rotation. For rotational axes anterior to the otoliths, VOR gain for the nearest target was initially higher but later became less than that for the far target. There was no gain correction for the physical separation between the eyes and otoliths. With lower acceleration, there was a nonlinear reduction in the early gain increase with close targets although later otolith-mediated effects were not affected. In subjects with unilateral vestibular deafferentation, the initial VOR was quantitatively normal for rotation toward the intact side. When rotating toward the deafferented side, VOR gain remained less than half of normal for at least the initial 55 ms when head acceleration was highest and was not modulated by target distance. After this initial high acceleration period, gain increased to a degree depending on target distance and axis eccentricity. This behavior suggests that the commissural VOR pathways are not modulated by target distance. These results suggest that the VOR is initially driven by short latency ipsilateral target distance dependent and bilateral target-distance independent canal pathways. After 25 ms, otolith inputs contribute to the target distance dependent pathway. The otolith input later grows to eventually dominate the target distance mediated effect. When otolith input is unavailable the target distance mediated canal component persists. Modulation of canal mediated responses by target distance is a nonlinear effect, most evident for high head accelerations.  相似文献   

8.
PURPOSE: The purpose of this article is to study the effects of modifying relative spectacle magnification to determine what effect this has on aniseikonia, binocularity, and visual comfort. METHODS: A prospective analysis of 34 aniseikonic patients was undertaken. The etiology of aniseikonia varied from physiologically occurring to induced. Aniseikonic screening included manifest refraction, keratometry, axial length, Randot stereoacuity, associated phoria, and Keystone space eikonometry. A modified pair of spectacles was fabricated on the basis of magnification principles for iseikonic lenses. Each patient was also given a control pair of conventional spectacles. A 4-week trial period was allowed for each pair of spectacles, pertinent examination measurements were repeated, and a patient survey was administered. Data were analyzed by t-test and chi-square. RESULTS: Modifying relative spectacle magnification reduced mean aniseikonic error by 1.06% (P < 0.0001). A difference was found between the control and modified spectacles for subjective reports of visual comfort, performance, and eye-strain (P < 0.05). There was no difference between the two groups for stereoacuity or cosmetic appearance of lenses. At the conclusion of the study, 93% of patients preferred the modified lenses in direct comparison. CONCLUSIONS: Our results confirm that modification of lens designs to equalize relative spectacle magnification reduces aniseikonia and improves subjective comfort and performance of anisometropic spectacles.  相似文献   

9.
1. Fifteen hundred and thirty cells were recorded in the medial vestibular nucleus (MVN) of alert monkeys whose vestibuloocular reflex (VOR) had been adapted to one of two kinds of spectacles. The "high-gain" sample was recorded from monkeys that had worn 2.0 x telescopic spectacles; the gain of the VOR in the dark (eye velocity divided by head velocity) was greater than 1.5. The "low-gain" sample was recorded from monkeys that had worn goggles providing a visual field that was fixed with respect to the freely turning head; the gain of the VOR was less than 0.4. 2. Cells showing modulation of firing rate related to imposed head velocity were grouped into four categories: pure vestibular (10), vestibular-plus-saccade (10), vestibular-plus-position (10), and vestibular-plus-head/body (24). Sensitivity to head velocity was measured from averaged responses to sinusoidal, 0.4-Hz whole-body oscillation in the horizontal plane. Almost all cells (98%) having increased firing during ipsilateral head rotation received inputs from the horizontal semicircular canals. Conversely, 82% of cells having increased firing during contralateral head rotation received inputs from the vertical canals. 3. There were no statistically significant differences in resting discharge rate, phase shift, or sensitivity to head velocity between the high- and low-gain samples of any of the cell types. Nonetheless, there was a consistent tendency, evident in all the functionally defined cell groups, for the sensitivity to be about 20% greater in the high-gain samples. However, this difference is small by comparison with the fourfold difference in VOR gain. 4. Detailed scrutiny of the response properties of individual cells suggested that the small differences in sensitivity reflect small changes distributed throughout the population, rather than large and potentially significant changes within a small sub-population. 5. Our data indicate that large, adaptive changes in the gain of the VOR are accompanied by only minor changes in the vestibular sensitivity and no changes in the phase shift or resting discharge rates of cells in the MVN. It remains possible that large changes in vestibular sensitivity occurred in cells we did not sample or in subgroups we could not identify. We argue that this is unlikely and that the major changes underlying VOR plasticity occur after the first central synapse in the VOR pathways.  相似文献   

10.
Gain adaptation of eye and head movement components of simian gaze shifts. J. Neurophysiol. 78: 2817-2821, 1997. To investigate the site of gaze adaptation in primates, we reduced the gain of large head-restrained gaze shifts made to 50 degrees target steps by jumping the target 40% backwards during a targeting saccade and then tested gain transfer to the eye- and head-movement components of head-unrestrained gaze shifts. After several hundred backstep trials, saccadic gain decreased by at least 10% in 8 of 13 experiments, which were then selected for further study. The minimum saccadic gain decrease in these eight experiments was 12.8% (mean = 18.4%). Head-unrestrained gaze shifts to ordinary 50 degrees target steps experienced a gain reduction of at least 9.3% (mean = 14.9%), a mean gain transfer of 81%. Both the eye and head components of the gaze shift also decreased. However, average head movement gain decreased much more (22.1%) than eye movement gain (9.2%). Also, peak head velocity generally decreased significantly (20%), but peak eye velocity either increased or remained constant (average increase of 5.6%). However, the adapted peak eye and head velocities were appropriate for the adapted, smaller gaze amplitudes. Similar dissociations in eye and head metrics occurred when head-unrestrained gaze shifts were adapted directly (n = 2). These results indicated that head-restrained saccadic gain adaptation did not produce adaptation of eye movement alone. Nor did it produce a proportional gain change in both eye and head movement. Rather, normal eye and head amplitude and velocity relations for a given gaze amplitude were preserved. Such a result could be explained most easily if head-restrained adaptation were realized before the eye and head commands had been individualized. Therefore, gaze adaptation is most likely to occur upstream of the creation of separate eye and head movement commands.  相似文献   

11.
The implication of the caudal part of the fastigial nucleus (cFN) in the control of saccadic shifts of the visual axis is now well established. In contrast a possible involvement of the rostral part of the fastigial nuceus (rFN) remains unknown. In the current study we investigated in the head-unrestrained cat the contribution of the rFN to the control of visually triggered saccadic gaze shifts by measuring the deficits after unilateral muscimol injection in the rFN. A typical gaze dysmetria was observed: gaze saccades directed toward the inactivated side were hypermetric, whereas those with an opposite direction were hypometric. For both movement directions, gaze dysmetria was proportional to target retinal eccentricity and could be described as a modified gain in the translation of visual signals into eye and head motor commands. Correction saccades were triggered when the target remained visible and reduced the gaze fixation error to 2.7 +/- 1.3 degrees (mean +/- SD) on average. The hypermetria of ipsiversive gaze shifts resulted predominantly from a hypermetric response of the eyes, whereas the hypometria of contraversive gaze shifts resulted from hypometric responses of both eye and head. However, even in this latter case, the eye saccade was more affected than the motion of the head. As a consequence, for both directions of gaze shift the relative contributions of the eye and head to the overall gaze displacement were altered by muscimol injection. This was revealed by a decreased contribution of the head for ipsiversive gaze shifts and an increased head contribution for contraversive movements. These modifications were associated with slight changes in the delay between eye and head movement onsets. Inactivation of the rFN also affected the initiation of eye and head movements. Indeed, the latency of ipsiversive gaze and head movements decreased to 88 and 92% of normal, respectively, whereas the latency of contraversive ones increased to 149 and 145%. The deficits induced by rFN inactivation were then compared with those obtained after muscimol injection in the cFN of the same animals. Several deficits differed according to the site of injection within the fastigial nucleus (tonic orbital eye rotation, hypermetria of ipsiversive gaze shifts and fixation offset, relationship between dysmetria and latency of contraversive gaze shifts, postural deficit). In conclusion, the present study demonstrates that the rFN is involved in the initiation and the control of combined eye-head gaze shifts. In addition our findings support a functional distinction between the rFN and cFN for the control of orienting gaze shifts. This distinction is discussed with respect to the segregated fastigiofugal projections arising from the rFN and cFN.  相似文献   

12.
An experimental study and mathematical analysis of the corneal reflex test was undertaken in spectacle wearers. In the experimental study, photographs were taken of the corneal reflex through spectacles and the conversion ratios determined as measured in degrees/mm. In the mathematical analysis, the magnification effect of the lens was elucidated by three methods: geometrical analysis; real measurement of magnification factor; and ray tracing analysis. The real measurement of the conversion ratios was in good agreement with the conversion ratios determined by the three mathematical analyses. These results clearly showed that the corneal reflex test can be clinically useful even in wearers of spectacles.  相似文献   

13.
Visual fixation, the act of maintaining the eyes directed toward a location of interest, is a highly skilled behavior necessary for high-level vision in primates. In spite of its significance, visual fixation is not well understood; it is not even clear what attributes of the visual input are used to control fixation. Here we show, in four Macaca fascicularis monkeys, that the position the eyes assume during fixation depends on the luminance of the background. Dark background yields fixation positions that are shifted upward with respect to the fixation positions obtained with a dimly illuminated, featureless background. This phenomenon was observed previously in a nutshell by Snodderly; here first we rigorously establish its existence by testing proper controls. We then study the properties of this upshift of the fixation position. We show that, although the size of the upshift varies between monkeys, for all monkeys the upshift is larger than the radius of the fovea. Hence, if the background is dim, the eyes are positioned during fixation so that the target does not fall on the fovea. The size of the upshift remains almost unchanged while the eyes fixate at different orbital positions; thus the upshift is not caused by orbital mechanics. The upshift clearly is present even at the first days of training, but with additional training in fixation with dark background, the upshift increases in size. The upshift rotates with the head. The upshift increases gradually with decreasing levels of background luminosity. Luminosity, not visual contrast, is indeed the primary variable determining the size of the upshift. The contribution of a unit area of the retina to the upshift decreases as inverse square root of distance from the target; therefore, it is the perifoveal region of the retina that mostly contributes to the upshift, while the far periphery has little influence. The upshift can be induced or be canceled in the midst of a fixation by changing the background illumination; hence, the upshift is indeed an attribute of the fixation control system. Finally, the fixation-upshift studied here is different from a previously reported upshift of the endpoints of memory-guided saccades with respect to their target locations. These two types of upshift add up to each other. In discussing the function of the upshift, we note a possible morphological analogue with the retinal rod distribution. The upshift moves the line of gaze to a point intermediate between the fovea and the "dorsal rod peak." The upshift thus may improve visual acuity in scotopic conditions. The brain structure in which the upshift is generated must be involved in both ocular control and visual sensation. We consider several possibilities, of which we regard as the most likely the cerebellum and superior colliculus.  相似文献   

14.
Thirty-six patients with a median age of sixty-seven years and a median duration of intermittent claudication of five years were randomized to either active treatment with Padma 28 or placebo. The effect of treatment was quantified by measurements of systemic and peripheral systolic blood pressures and by measurements of the pain-free and the maximal walking distance on a treadmill. The ankle pressure index (ankle systolic pressure/arm systolic pressure) was calculated. The group randomized to active treatment received two tablets bid containing 340 mg of a dried herbal mixture composed according to an ancient lamaistic preparation (Padma 28). After active treatments, administered over a period of four months in a double-blinded, randomized design, the patients allocated to this group attained a significant increase in the pain-free walking distance from 52 m (20-106) to 86 m (24-164; P < 0.05) and in the maximal walking distance from 115 m (72-218) to 227 m (73- > 1,000; P < 0.05). The patient-group receiving placebo treatments did not show any significant changes in either the painfree or the maximal walking distance. The authors could not demonstrate any significant changes in the ankle pressure index either during active or during placebo treatment. In conclusion, this study has shown that treatment with Padma 28 over a period of four months significantly increased the walking distance in patients with stable, intermittent claudication of long duration.  相似文献   

15.
In hemianopic patients target predictability plays a differential role for the distribution of different types of initial saccades. A linear correlation was shown to exist between the adaptive state of reading capability and the probability of a correct initial eye-head gaze saccade that hit the target accurately. A constant target frequency of 0.8 Hz was found to be the optimum frequency for hemianopic patients to follow square step targets with an eccentricity of +/- 20 degrees. Variability of the compensatory eye movement velocity gain was lowest at this frequency. We were able to use this target frequency as a test for a clinical classification of the status of adaptation of hemianopic patients in combination with simple reading tests. The repetition of this manoeuvre could correct the synkinesis and the balance of the VOR during active gaze of hemianopic patients.  相似文献   

16.
The authors used a virtual environment to investigate visual control of reaching and monocular and binocular perception of egocentric distance, size, and shape. With binocular vision, the results suggested use of disparity matching. This was tested and confirmed in the virtual environment by eliminating other information about contact of hand and target. Elimination of occlusion of hand by target destabilized monocular but not binocular performance. Because the virtual environment entails accommodation of an image beyond reach, the authors predicted overestimation of egocentric distances in the virtual relative to actual environment. This was confirmed. The authors used -2 diopter glasses to reduce the focal distance in the virtual environment. Overestimates were reduced by half. The authors conclude that calibration of perception is required for accurate feedforward reaching and that disparity matching is optimal visual information for calibration. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
1. We electrically stimulated the intermediate and deep layers of the superior colliculus (SC) in two rhesus macaques free to move their heads both vertically and horizontally (head unrestrained). Stimulation of the primate SC can elicit high-velocity, combined, eye-head gaze shifts that are similar to visually guided gaze shifts of comparable amplitude and direction. The amplitude of gaze shifts produced by collicular stimulation depends on the site of stimulation and on the parameters of stimulation (frequency, current, and duration of the stimulation train). 2. The maximal amplitude gaze shifts, produced by electrical stimulation at 56 sites in the SC of two rhesus monkeys, ranged in amplitude from approximately 7 to approximately 80 deg. Because the head was unrestrained, stimulation-induced gaze shifts often included movements of the head. Head movements produced at the 56 stimulation sites ranged in amplitude from 0 to approximately 70 deg. 3. The relationships between peak velocity and amplitude and between duration and amplitude of stimulation-induced head movements and gaze shifts were comparable with the relationships observed during visually guided gaze shifts. The relative contributions of the eyes and head to visually guided and stimulation-induced gaze shifts were also similar. 4. As was true for visually guided gaze shifts, the head contribution to stimulation-induced gaze shifts depended on the position of the eyes relative to the head at the onset of stimulation. When the eyes were deviated in the direction of the ensuing gaze shift, the head contribution increased and the latency to head movement onset was decreased. 5. We systematically altered the duration of stimulation trains (10-400 ms) while stimulation frequency and current remained constant. Increases in stimulation duration systematically increased the amplitude of the evoked gaze shift until a site specific maximal amplitude was reached. Further increases in stimulation duration did not increase gaze amplitude. There was a high correlation between the end of the stimulation train and the end of the evoked gaze shift for movements smaller than the site-specific maximal amplitude. 6. Unlike the effects of stimulation duration on gaze amplitude, the amplitude and duration of evoked head movements did not saturate for the range of durations tested (10-400 ms), but continued to increase linearly with increases in stimulation duration. 7. The frequency of stimulation was systematically varied (range: 63-1,000 Hz) while other stimulation parameters remained constant. The velocity of evoked gaze shifts was related to the frequency of stimulation; higher stimulation frequencies resulted in higher peak velocities. The maximal, site-specific amplitude was independent of stimulation frequency. 8. When stimulating a single collicular site using identical stimulation parameters, the amplitude and direction of stimulation-induced gaze shifts, initiated from different initial positions, were relatively constant. In contrast, the amplitude and direction of the eye component of these fixed vector gaze shifts depended upon the initial position of the eyes in the orbits; the endpoints of the eye movements converged on an orbital region, or "goal," that depended on the site of collicular stimulation. 9. When identical stimulation parameters were used and when the eyes were centered initially in the orbits, the gaze shifts produced by caudal collicular stimulation when the head was restrained were typically smaller than those evoked from the same site when the head was unrestrained. This attenuation occurred because stimulation drove the eyes to approximately the same orbital position when the head was restrained or unrestrained. Thus movements produced when the head was restrained were reduced in amplitude by approximately the amount that the head would have contributed if free to move. 10. When the head was restrained, only the eye component of the intended gaze shift  相似文献   

18.
Oxygen consumption during ambulation was measured in 10 normal subjects wearing ankle weights of 0.91 kg, 1.82 kg, and 2.73 kg, either on the right ankle or bilaterally. Subjects walked at self-selected speeds and oxygen consumption was measured over 1-minute intervals during steady-state walking. Oxygen consumption per unit distance and oxygen consumption rate demonstrated significant positive linear correlations with added weight (P = .001, P = 0.007, respectively). Velocity demonstrated a significant decrease when correlated with added weight (P = 0.03). Multiple regression analysis was used to relate these measures of oxygen consumption rates to velocity, age, and added weight, yielding predictive relationships. Based on these results, the weight of orthoses should be minimized in order to maximize walking velocity and minimize oxygen consumption per unit distance. The advantage of a light-weight, molded plastic ankle-foot orthosis (AFO) over heavier AFO designs is demonstrated by this study.  相似文献   

19.
The cerebellar control of orienting behavior toward visual targets was studied in the head-unrestrained cat by analyzing the deficits of saccadic gaze shifts after unilateral injection of muscimol in the caudal part of the fastigial nucleus (cFN). Gaze shifts are rendered strongly inaccurate by muscimol cFN inactivation. The characteristics of gaze dysmetria are specific to the direction of the movement with respect to the inactivated cFN. Gaze shifts directed toward the injected side are hypermetric. Irrespective of their starting position, all these ipsiversive gaze shifts overshoot the target by a constant horizontal error (or bias) to terminate at a "shifted goal" location. In particular, when gaze is directed initially at the future target's location, a response with an amplitude corresponding to the bias moves gaze away from the actual target. Additionally, when gaze is initially in between the target and this shifted goal location, the response again is directed toward the latter. This deficit of ipsiversive gaze shifts is characterized by a consistent increase in the y intercept of the relationship between horizontal gaze amplitude and horizontal retinal error. Slight increases in the slope sometimes are observed as well. Contraversive gaze shifts are markedly hypometric and, in contrast to ipsiversive responses, they do not converge onto a shifted goal but rather underestimate target eccentricity in a proportional way. This is reflected by a decrease in the slope of the relationship between horizontal gaze amplitude and horizontal retinal error, with, for some experiments, a moderate change in the y-intercept value. The same deficits are observed in a different setup, which permits the control of initial gaze position. Correction saccades rarely are observed when visual feedback is eliminated on initiation of the primary orienting response; instead, they occur frequently when the target remains visible. Like the primary contraversive saccades, they are hypometric and the ever-decreasing series of three to five correction saccades reduces the gaze fixation error but often does not completely eliminate it. We measured the position of gaze after the final correction saccade and found that fixation of a visible target is still shifted toward the inactivated cFN by 4.9 +/- 2.4 degrees. This fixation offset is correlated to, but on average 54% smaller than, the hypermetric bias of ipsiversive responses measured in the same experiments. In conclusion, the cFN contributes to the control of saccadic shifts of the visual axis toward a visual target. The hypometria of contraversive gaze shifts suggests a cFN role in adjusting a gain in the translation of retinal signals into gaze motor commands. On the basis of the convergence of ipsiversive gaze shifts onto a shifted goal, the straightness of gaze trajectory during these responses and the production of misdirected or inappropriately initiated responses toward this shifted goal, we propose that the cFN influences the processes that specify the goal of ipsiversive gaze shifts.  相似文献   

20.
研究了参数设置对扫描电镜检测夹杂物的影响,讨论了放大倍数、搜索网格大小、加速电压及工作距离等参数对测量夹杂物尺寸、数量的影响。研究结果表明,放大倍数越小,搜索网格的数量越少,检测到的夹杂物平均数量越少,平均夹杂物尺寸越大;当放大倍数降低到100倍左右、搜索网格为512×512、加速电压为25kV、工作距离为17.5mm时,能够检测到实验钢种夹杂物的平均尺寸约4μm,最小尺寸约1μm。其次,工作距离越大,加速电压越小,检测到的夹杂物数量越多,平均夹杂物尺寸越小。这主要是因为图像的分辨率随着工作距离增加和加速电压的减小而提高,进而导致在测试过程中大量细小的夹杂和析出物被检测到;因而在检测细小的夹杂和析出时,应增大工作距离或者降低工作电压,特别是在精确检测非常细小的MnS夹杂时,应适当增加工作距离至20.5mm或降低加速电压至15kV以下。不同测量面积设置的实验结果表明,对于本实验材料,检测面积大于20mm~2时实验结果更可靠、更具代表性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号