首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以15kA稀土电解槽为研究对象,利用COMSOL软件中的电热耦合模块对稀土电解槽的温度场进行模拟,对稀土电解槽内的温度分布规律进行分析。研究结果表明:稀土电解槽内横向温度分布为圆弧形阳极与其相邻的阴极之间温度最高,阴极与阴极之间温度稍低,纵向温度分布是从上至下先升高再降低。  相似文献   

2.
随着稀土熔盐电解槽电解过程的进行,阴极形状会随着时间的推移发生电腐蚀,电解槽底部阴极锥角α不断增大,对电解效率与热场产生了一定影响.以越南镝铁阴极稀土电解槽为研究对象,利用COMSOL多物理场耦合软件,计算了稀土电解槽中阴极不同电解阶段不同阴极形状的电解特性参数,得到了电解槽中不同阴极锥角α值与最大电流密度关系曲线图,并分析了电解槽内阴极电蚀对整个电解反应过程的影响,为电解槽的后期维护提供了参考依据.  相似文献   

3.
随着稀土熔盐电解槽电解过程的进行,阴极形状会随着时间的推移发生电腐蚀,电解槽底部阴极锥角α不断增大,对电解效率与热场产生了一定影响.以越南镝铁阴极稀土电解槽为研究对象,利用COMSOL多物理场耦合软件,计算了稀土电解槽中阴极不同电解阶段不同阴极形状的电解特性参数,得到了电解槽中不同阴极锥角α值与最大电流密度关系曲线图,并分析了电解槽内阴极电蚀对整个电解反应过程的影响,为电解槽的后期维护提供了参考依据.   相似文献   

4.
王郅阳  逄启寿  李彬 《稀土》2024,(2):128-135
市面上中、小型稀土电解槽存在效率低、底部金属易凝结、产量小等不足。以15 kA稀土电解槽为研究对象,先探究外部铺设辅热装置能否改善电流密度分布和提升温度,再探究辅热位置和辅热温度对电解槽的电场和热场的影响,建立辅热前后电解槽的电热场三维仿真模型,观察电热场分布情况。结果表明,电解槽外部铺设辅热装置能有效改善电流密度分布,阴极底部最大电流密度有效提升,同时槽内温度有所提升,高温面积增大,有利于电解反应高效持续进行。在电解槽下部铺设辅热设备,并设置辅热温度为1310 K时,阴阳极间电流密度最大,且分布均匀;有利于提升电解效率;同时底部坩埚保持较高温度,可减少稀土金属在坩埚内凝结沉积。  相似文献   

5.
以3kA钕电解槽为研究模型,考虑到电热场在电解过程中的相互影响,运用COMSOL有限元模拟软件建立了的电热耦合模型,并对不同配比的电极插入深度、极间距进行仿真模拟。结果表明,在一定槽电压下,电极插入深度与极间距之间存在配比关系,配比关系影响电流和温度分布。电热场耦合后,在4.2V槽电压下,电极插入深度为220 mm、极间距75 mm时的电流效率较高,电解过程更加稳定。  相似文献   

6.
为了解决稀土电解槽内热场分布不均匀的问题,建立15kA稀土电解槽三维模型并对模型的阴阳极中心距进行调整,同时利用COMSOL软件对不同阴阳极中心距下的电解槽内电热场进行模拟分析,从而得到电解槽内三维电热场的分布情况。结果表明:电解槽内高温等值面随着阴阳极中心距的增大不断朝电解槽中心移动,右侧阴极的最高等温面逐渐缩小并从阳极脱落,而左侧阴极附近最高等温面不断扩大并向电解槽中心移动;随着阴阳极中心距的增大,电解槽内最大电流密度的变化未出现明显规律,在阴阳极中心距d=33 mm时达到极大值,此时高温等值面分布也最为均匀;最佳电解槽阴阳极中心距为33mm。  相似文献   

7.
氯化物熔盐电解槽在电解过程中受温度影响很大,有必要对电解槽中的电热场进行分析计算。利用COMSOL软件建立三维氯化物熔盐电解槽电热场模型,得到槽内电势和温度分布,分析电解槽的热平衡,在热平衡的基础上,计算电解槽结构参数对电热场的影响,并推导出放大方程。计算表明,缩短阴阳极间距,增大阴极高度、阴极半径、阳极半径及电解质液面高度可以在热平衡的条件下提高电流强度,依据无因次关系式可进行结构优化设计或电解槽放大设计而不需要复杂的建模,可以节省计算资源。  相似文献   

8.
以6 kA稀土熔盐电解槽为研究对象,采用COMSOL Multiphysics多物理场耦合软件,建立稀土熔盐电解槽三维电场和温度场的数学模型进行计算和分析。分析得出:稀土熔盐电解槽内电场分布以阴极与阳极之间电势梯度最大,电势线较为密集;温度场以阴极和阳极中间区域为主要发热区,说明电解发生区域主要集中在阴极与阳极中间。  相似文献   

9.
以60kA底部阴极电解槽为研究对象,利用有限元软件建立了稀土电解槽的三维电场数学模型,对90、100、110、120mm几种不同极距工况下稀土电解槽电场分布情况进行模拟,并对模拟结果进行了分析;结果表明100mm为最佳极间距。  相似文献   

10.
稀土熔盐电解槽电场的数值模拟   总被引:4,自引:3,他引:1  
利用有限元软件ANSYS建立了稀土电解槽的电极及熔体整体电场数学模型。对电解槽的电极插入不同深度及不同极间距的电场进行了数值模拟,得出了电解槽的电位及电流密度分布和电位及电流密度在电极表面的分布曲线,为熔盐稀土电解槽其他场的分析提供了更准确的边界条件。  相似文献   

11.
采用有限元仿真计算的方法对高导电阴极钢棒结构240kA铝电解槽进行了电热场计算。分析高导电阴极钢棒对铝液水平、槽电压以及电解槽温度分布的影响。结果表明,阴极压降可以有效降低107mV,并可有效减少铝液中的水平电流。  相似文献   

12.
在稀土熔盐的电解过程中,不同的通电方式对槽内各物理场影响也不同,进而会对电解槽的电解效率产生一定的影响。本文以某企业8 kA稀土电解槽为原型,通过Comsol的热电耦合模块研究通电铜板单侧与多侧分布的通电方式及通电铜板的不同位置分布下的电解槽电解时内部各物理场的变化情况,通过对比电流密度、电势差、电解温度的大小寻找最合适的通电方式。结果表明:只考虑电解效率时,导电板四侧中位通电最优分布方式,此时电解槽内电流密度最大,电能损耗最低,电解效果最好。若考虑制造成本以及可操作性,导电板单侧中位分布是最优解,这种设计的电解槽电解效率较高,同时也留出较大操作空间。其余几种分布均存在弊端,需要进一步完善。该研究旨在为稀土电解槽的结构优化提供参考意见。  相似文献   

13.
稀土熔盐电解槽内温度场数值模拟   总被引:1,自引:1,他引:0  
在前人电场及流场的研究基础上,考虑电热场及电解质流动对温度场分布的影响,利用差分法建立柱坐标下的能量传输方程的上风差分离散格式,采用FORTRAN97编程,对3kA钕电解槽的温度场进行了数值模拟。结果表明,电极之间的发热强度最大,但并不是电解槽的最高温区,高温区在接收器内部(1 100℃),模拟结果与实测结果比较吻合。  相似文献   

14.
运用数值模拟软件COMSOL研究了不同电极插入深度下3kA钕电解槽的电热场。结果表明,电解槽槽电压随着阴阳极插入深度的递增而降低,槽体的整体温度随着阴阳极插入深度的增加而下降。结合实际生产经验与本研究结果,认为电极插入深度220mm比较适宜,且整个电解过程相对稳定,能够达到槽体电压、温度分布等方面的要求。  相似文献   

15.
运用数值模拟软件COMSOL,建立10 kA底部阴极稀土电解槽阳极插入深度一定时电解槽双电层、温度场的耦合模型。对比稀土电解槽内双电层-温度场耦合前后模拟结果发现,耦合前后双电层电势分布形态基本一致,其数值没有明显差别;温度场的分布形态发生变化,温度分布均在阴阳极之间达到最高,并且耦合后出现高温逐渐下移现象,耦合前后其电解主要区域最高温差约3℃。根据双电层-温度场耦合数值模拟结果,为优化底部阴极电解槽的参数提供理论依据,加快电解槽的设计和开发。  相似文献   

16.
10kA底部阴极稀土熔盐电解槽热平衡计算   总被引:4,自引:2,他引:2  
对10kA底部阴极结构稀土熔盐电解槽进行了热平衡计算,并对计算结果进行了分析和讨论,为槽型的改进和电解过程的节能降耗提供合理有效的建议.  相似文献   

17.
张小联 《江西有色金属》1998,12(4):24-25,28
针对熔盐电解制备稀土中间合金过程中电解温度对合金组成的影响很大,通过不同阴极电流密度和电解电流条件对电解槽温度分布的测定,得到了氯化物熔盐电解制备富钇-镍稀土中间合金中电解槽熔体温度分布曲线,对指导生产具有一定的意义。  相似文献   

18.
针对上插阴阳极式稀土电解槽存在结构缺陷、耗能大、生产效率低等问题,设计了一种10kA底部阴极稀土电解槽,利用ANSYS仿真软件研究了电解槽阴极半径和阴阳极距变化对电解槽电场的影响,以及对电解槽熔体电位的影响。结果表明:电解槽的阴极半径在65~70cm之间、极距在14cm以下时,电位等势线平行分布,电流线分布均匀,反应区热量均匀,有利于生产效率提高和能耗降低,电解槽设计合理。研究结果可作为此类型电解槽结构优化设计参考依据。  相似文献   

19.
本研究将新式节能阴极结构技术应用于某铝厂500kA铝电解槽,通过电解槽电热平衡仿真模拟,设计保温型内衬结构,成功减少了铝液中水平电流,并降低了电解槽阴极电压降。与传统铝电解槽相比,节能降耗效果显著。  相似文献   

20.
以电解生产技术参数为设定条件,利用有限元ANSYS为平台,建立200kA电解槽三维电热场模型,对其进行模拟分析,其结果显示电解槽在生产中存在炉帮厚、伸腿长及内热不足等问题,这与生产中存在的问题基本相符。本文通过有限元ANSYS建模、分析、诊断铝电解生产中电热场的实际情况,提出优化方案,为铝电解槽的优化生产工艺参数提供了可靠、快速的方法和手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号