首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 265 毫秒
1.
机械合金化Ti/Al合金的制备   总被引:3,自引:0,他引:3  
采用多维摆动式球磨机机械合金化Ti/Al二元粉末,研究了机械合金化过程中粉末结构的变化。Ti/Al混合粉末经高能球磨后,颗粒尺寸下降,Ti、Al晶粒各自逐渐细化至纳米级尺寸,且部分形成非晶,球磨15h后发现了TiAl和Ti3Al金属间化合物。将机械合金化后的粉末进行放电等离子烧结,烧结试样的组成相主要为TiAl和Ti3Al。  相似文献   

2.
Al/MoSi2复合粉末材料的机械合金化合成   总被引:3,自引:0,他引:3  
通过机械合金化和热处理制备了Al/MoSi2复合粉末,利用X射线分析了相的变化,并根据Burgio模式估算了生成Mo(Si,Al)2相的球磨能。结果表明:Al-Mo-Si混合粉在高能球磨过程中无Al-Mo中间相产生,Mo(Si,Al)2相的机械合金化机理为类自蔓延,其生成所需的球磨能量约为24.5-30.6kJ.g^-1,将球磨40h的Al-Mo-Si混合烃经1000℃热处理后可获得MoSi2(Al)固溶体或MoSi2和Mo(Si,Al)2复合材料。  相似文献   

3.
Mo(Si,Al)2粉末材料的机械合金化合成   总被引:1,自引:0,他引:1  
通过机械合金化由MoSi2,Mo和Al粉末合成了Mo(Si1-x,Alx)2粉末材料,用X射线衍射分析了相的变化和粉末的晶粒度,用扫描电镜观察球磨后的粉末形貌与粒度,并根据Burgio模式估算了生成Mo(Si,Al)2相的球磨能.结果表明MoSi2,Mo和Al混合粉经高能球磨5 h后生成了MoSi2和Mo(Si,Al)2,没有单质粉末剩余,也无Al-Mo中间相产生;球磨40 h后的粉末粒度为亚微米级,晶粒度在21 nm~40 nm之间,Mo(Si,Al)2相的机械合金化合成机理为类自蔓延反应,其生成所需的球磨能量约为15.4 kJ/g.  相似文献   

4.
采用X射线衍射仪、电子扫描和DTA差热分析等手段,研究了在Ar气氛保护下Al-ZnO粉在高能球磨过程中发生的机械合金化反应.分析了不同球磨时间对粉体颗粒大小、成分、形貌、热稳定性及Al2O3粒子反应生成的影响.结果表明高能球磨可以有效实现Al-ZnO固相置换反应.经过30h球磨后,Al-ZnO能完全发生机械合金化反应,60h后可获得Zn-Al2O3复合粉末.置换生成Zn的熔点降低到398℃.  相似文献   

5.
研究了ZrO_2-50mol%CaO陶瓷粉末的机械合金化过程,发现高能球磨可以极大地提高ZrO_2和CaO的反应速率。在本实验条件下,经120h球磨,生成CaZrO_3化合物。探讨了脆性陶瓷材料发生机械合金化的原因,提出了复合粒子合金化的机制。  相似文献   

6.
参考Miedema半经验公式,建立Al-Pb系机械合金化过程的热力学模型,并对所制备的Al-10%Pb粉末进行热力学计算和对比分析。实验表明利用机械合金化方法可以获得在Al基体上均匀弥散分布着纳米相Pb的复合结构;热力学计算结果表明,Al-Pb系粉末机械合金化过程不具备形成非晶相、固溶体和中间化合物的热力学驱动力。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)分析Al-10%Pb合金在高能球磨过程中的组织结构,表明,所建立的热力学模型是正确的。  相似文献   

7.
机械合金化制备Al-Pb粉末   总被引:8,自引:1,他引:7  
通过X射线衍射(X-ray)、电子扫描电镜(SEM)及点阵常数和晶粒尺寸的计算,分析了互不相溶的Al-Pb混合粉末在机械合金化过程中的微观组织变化。结果表明:机械合金化方法可获得Pb(Al)固溶体;Pb和Al混合粉末颗粒在高能球磨作用下,极度细化成纳米晶,且Pb颗粒在基体中均匀分散,有利于制备高性能Al-Pb系耐磨材料  相似文献   

8.
在高纯氩气保护下采用高能球磨法对原子组成为Fe44Co44Zr3.5Nb3.5B4Cu1的混合粉末进行机械合金化(MA)实验,成功地制取了非晶合金粉末.利用X射线衍射(XRD)、扫描电镜(SEM)、差热分析(DTA)对其进行测试,结果表明:Fe-Co系的混合粉末在MA过程中,通过原子之间的相互固溶、扩散可形成非晶态.此非晶合金的形成是晶粒细化、球磨过程中的缺陷、应力和致密堆垛结构等多种因素综合作用的结果,这与机械合金化的合成机理之一的扩散型机制相吻合.用非晶化的热力学条件判据和动力学条件判据对此合金进行计算,其结果也表明此合金已非晶化.  相似文献   

9.
对Laves相Cr2Nb化学配比成分的元素混合粉末的机械合金化行为进行了研究.结果表明,在机械合金化过程中,Cr、Nb元素混合粉末首先变成复合粉末,复合粉末中的成分逐渐均匀并演变成过饱和固溶体.机械合金化40h后过饱和固溶体发生部分非晶化.粉末颗粒尺寸在机械合金化初期的5h内粗化,随后逐渐细化,50h后细至亚微米级.在50h的机械合金化过程中始终未发现Laves相Cr2Nb的合成.但15h的机械合金化粉末在900℃的较低温度下通过固相热反应合成出了Laves相Cr2Nb,而未球磨的原始粉末在此温度下未能合成.这说明机械合金化虽然没有直接合成出Laves相Cr2Nb,但产生了活化Laves相高温反应合成的效果,使合成反应温度显著降低.  相似文献   

10.
机械合金化诱导难互溶系Cu-Cr合金固溶度扩展的研究   总被引:4,自引:2,他引:2  
采用机械合金化工艺制备Cu-4%Cr和Cu-7%Cr(原子分数)二元合金粉末,利用XRD,SEM和TEM研究机械合金化过程中粉末的微观形貌和显微组织结构,测量了不同球磨时间粉末的氧含量以及显微硬度.结果表明:在一定的球磨时间内,Cu-Cr合金粉末随着高能球磨的进行,晶粒逐渐细化至纳米尺寸,晶格畸变增加,但进一步球磨会导致铜的晶格常数有所增加,畸变降低.实验证明,在固态下几乎不互溶的Cu-Cr合金,经球磨40 h的机械合金化,Cr在Cu中的固溶度明显提高.  相似文献   

11.
运用XRD、SEM等方法研究了Al2O3-CeO2-ZrO2-Ni高能球磨体系在不同的球磨工艺条件下的组织结构转变和分散性的问题.结果表明,四种物质一起球磨时,不会发生机械合金化,但随着球磨时间的延长,Al2O3、CeO2、ZrO2粉末都会不断被细化,而Ni颗粒仍较粗大且分布很不均匀.通过改变球磨顺序,将CeO2、ZrO2和Ni先球磨30 h再添加Al2O3继续球磨30 h,却能使CeO2和ZrO2发生合金化生成固溶体,且Ni颗粒有明显的细化,分散性也明显提高.  相似文献   

12.
An amorphous Al50(Fe2B)30Nb20 powder mixture was prepared by mechanical alloying in a high-energy planetary ball-mill under argon atmosphere. Morphologic, microstructural, and structural changes during the milling process were followed by scanning electron microscopy and X-ray diffraction. Rietveld analysis of X-ray diffraction patterns was used to follow the solid-state amorphization transformation during the milling process of the prepared powder. The reaction between elemental Al, Fe2B, and Nb powders leads to the formation of the Al(Fe,B) and Al(Fe,Nb,B) solid solutions after 4 and 6 hours of milling, respectively. An amorphous structure is achieved after 20 of milling. These amorphous powders are crystallized on further milling time (36 hours). The observation by scanning electron microscope shows a phenomenon of fracturing followed by compaction of the powder particles.  相似文献   

13.
《粉末冶金学》2013,56(3):408-411
Abstract

The aims of this work were to produce nanocrystalline powder by mechanical alloying of FeTi2–Al–C powder mixture in a high energy ball mill and to study the phase transformation that took place during 20 h milling time. The microstructure and the phase transformations in the powder during milling were examined as a function of milling time and heat treatment. The phases of the product were evaluated by X-ray diffraction technique. The microstructural evolution during mechanical alloying was analysed using SEM. The results obtained showed that high energy ball milling, as performed in this work, led to the formation of a bcc phase identified as Fe(Al) solid solution and TiCx after 2 h milling and nanocrytalline AlFe3 and TiCx after 5 h milling. The increase in the milling time resulted in the formation of AlFe3Cx. By heat treatment of the body after 20 h milling at 1000°C, AlFe3Cx disappeared, showing that this phase is unstable.  相似文献   

14.
Formation of metastable and equilibrium phases during mechanical alloying by high-energy ball milling of mixtures of Al and Mg powders was studied using X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). Different phases were formed, depending on the overall composition of the starting mixture. A powder mixture of nominal composition 40 at. pct Mg gradually becomes converted into a metastable supersaturated Al(Mg) face-centered cubic (fcc) solid solution having approximately 23 at. pct Mg in solution. Powder mixtures of nominal composition of 60 or 80 at. pct Mg gradually transform into the equilibrium γ phase during mechanical alloying, but for the composition of 80 at. pct Mg, some unalloyed Mg is left. Mechanical alloying is comparable to rapid solidification in producing metastable phases in the Al-Mg system, except that mechanical alloying is likely to leave some residual unalloyed elements. There is no indication of the formation of the other equilibrium phase, the β phase, present in the phase diagram. The reason why the β phase does not form is thought to be related to the complex structure and a very large unit cell associated with this phase. However, the β phase is obtained if the mechanical alloyed powders are heat-treated at higher temperatures.  相似文献   

15.
采用机械合金化法、高能机械化学法、化学法+高能球磨法等3种方法实验合成MoSi2粉末,并对其成分和物相进行了分析。实验结果表明,化学法+高能球磨法可高效地合成出高纯度MoSi2粉末,其工艺为:按照Mo∶Si∶C=1∶3∶7(原子比)配制MoO3粉末、SiC粉末和碳粉的混合粉末,在1 200℃下,在刚玉管炉中,用50%Ar-50%H2混合气体对其还原12 h,获得MoSi2-SiO2混合粉末,用氢氟酸溶液除去SiO2粉末,获得纯MoSi2粉末,然后高能球磨4 h以改变其颗粒形貌和粒度组成。  相似文献   

16.
机械合金化Al—10Fe—4Ni粉末体组织特征   总被引:1,自引:0,他引:1  
采用扫描电镜、电子探针及X射线结构分析研究了铝、铁、镍单元混合粉在机械合金化时粉末的粒度、形态、组织特征以及微观结构的变化规律。测定了铁、镍在铝中的固溶度变化以及球磨对微观应变及微晶尺寸的影响,结果表明,铁、镍在铝中的固溶与微晶尺寸碎化同时进行,但这一切都必须以三种粉末在球磨初期形成细密的复合层状组织为前提。  相似文献   

17.
Mechanical alloying of brittle materials   总被引:7,自引:0,他引:7  
Mechanical alloying by high energy ball milling has been observed in systems with nominally brittle components. The phases formed by mechanical alloying of brittle components include solid solutions (Si + Ge → SiGe solid solution), intermetallic compounds (Mn + Bi → MnBi), and amorphous alloys (NiZr2 + Ni11Zr9 → amorphous Ni50Zr50). A key feature of possible mechanisms for mechanical alloying of brittle components is the temperature of the powders during milling. Experiments and a computer model of the kinetics of mechanical alloying were carried out in order to esti-mate the temperature effect. Temperature rises in typical powder alloys during milling in a SPEX mill were estimated to be ≤350 K using the kinetic parameters determined from the computer model. The tempering response of fresh martensite in an Fe-1.2 wt pct C alloy during milling was consistent with the maximum results of the computer model, yielding temperatures in the pow-ders of ≤575 Ki.e., ΔT ≤ 300 K). Thermal activation was required for mechanical alloying of Si and Ge powder. No alloying occurred when the milling vial was cooled by liquid nitrogen. The pos-sible mechanisms responsible for material transfer during mechanical alloying of brittle components are considered.  相似文献   

18.
Objective of the work was to synthesize nanostructured FeAl alloy powder by mechanical alloying (MEA). The work concentrated on synthesis, characterization, structural and mechanical properties of the alloy. Nanostructured FeAl intermetallics were prepared directly by MEA in a high energy rate ball mill. Milling was performed under toluene solution to avoid contamination from the milling media and atmosphere. Mixtures of elemental Fe and Al were progressively transformed into a partially disordered solid solution with an average composition of Fe—50 at % Al. Phase transformation, structural changes, morphology, particle size measurement and chemical composition during MEA were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS) respectively. Vickers micro hardness (VMH) indentation tests were performed on the powders. XRD and SEM studies revealed the alloying of elemental powders as well as transition to nanostructured alloy, crystallite size of 18 nm was obtained after 28 hours of milling. Expansion/contraction in lattice parameter accompanied by reduction in crystallite size occurs during transition to nanostructured alloy. Longer milling duration introduces ordering in the alloyed powders as proved by the presence of superlattice reflection. Elemental and alloyed phase coexist while hardness increased during MEA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号