首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
采用N235从镍钼矿盐酸浸出液中萃取钼的研究   总被引:3,自引:0,他引:3  
采用N235对镍钼矿盐酸浸出液进行了萃取钼的研究。试验结果表明,在最佳工艺条件下,5级逆流钼萃取率可达98%以上,镍损失率小于1%,负载有机相经稀酸洗涤除铁后采用氨水反萃,1级反萃率达97%以上,反萃液钼浓度为50 g/L左右,达到了钼镍分离及钼富集转型的目的。  相似文献   

2.
高钼钨酸钠溶液萃取分离钨钼的研究   总被引:2,自引:0,他引:2  
本文研究了在不加络合剂条件下,在硫酸体系中N_(263)萃取分离钨镅的新工艺,考察了在单级分离过程中多因素的影响,得出了最佳条件。通过串级实验表明:反萃液(钨酸铵)Mo/WO_3≤0.01%达到分离质量要求。  相似文献   

3.
萃取法处理低镍钴浸出液的工艺研究   总被引:2,自引:1,他引:1  
针对目前生物浸出液中铁含量高而有价金属浓度低的情况,并且在低温低pH值条件下对铁与镍、钴进行分离.选取N235+ TBP为萃取剂,采用煤油作为稀释剂,考察了单级萃取硫酸盐溶液体系中铁与镍、钴离子的分离情况及影响因素,并在此基础上进行了3级错流萃取的实验研究,同时研究了负载有机相反萃的条件.结果表明:N235-TBP体系...  相似文献   

4.
采用恒界面池法研究了N235从独居石优溶渣浸出液中萃取铁的萃取动力学,在室温下考察了搅拌速度、比界面积、N235体积分数、改性剂仲辛醇体积分数、初始铁质量浓度和盐酸浓度对铁的正向萃取速率的影响。结果表明:搅拌速度小于90 r/min时,萃取过程由扩散反应控制,铁的萃取速率随搅拌速度增大而增大;搅拌速度大于90 r/min后,萃取速率不再变化,萃取过程为化学反应控制;随比界面积增加,萃取速率加快,萃取过程受界面混合控制;增大铁、盐酸和N235用量可加快萃取速率,增大仲辛醇用量可减缓萃取速率。在室温条件下,独居石优溶渣浸出液中铁的萃取动力学方程为:R0=0.037[Fe]0.94[HCl]0.72[N235]0.52。  相似文献   

5.
N235萃取镍钼矿硫酸浸出液中钼的研究   总被引:4,自引:0,他引:4  
对N235萃取镍钼矿酸浸液中的钼进行了实验研究,确定了萃取和反萃步骤的最优条件。结果表明,三级逆流萃取率可达99.7%,而一级反萃率可达95.5%,反萃液钼浓度约为100 g/L,整个工艺的金属钼直收率可达98%以上。通过该工艺可实现镍钼矿酸浸液中的镍钼分离,以及钼的富集和部分除杂。  相似文献   

6.
含钒酸性溶液阴离子萃取分离钒铁的研究   总被引:2,自引:1,他引:1       下载免费PDF全文
采用叔胺萃取剂N235对含钒酸性溶液进行萃取,主要研究了萃取温度、振荡时间、萃取剂浓度、相比(O/A)及pH对钒、铁萃取分离效果的影响。结果表明,硫酸型N235从酸性溶液中萃取钒的机理是阴离子萃取,并且当温度为20~40℃,振荡时间3min,N235浓度10%,O/A=1∶3,溶液pH为1.45~1.6时,单级萃取率可达到84%。  相似文献   

7.
P204和P507常用作萃取剂用于稀土浸出液的萃取,采用单一萃取剂萃取难以有效分离、富集稀土,本文利用P507萃取高浓度稀土溶液时对轻稀土萃取能力较弱而P204萃取能力强的特点,创新性提出采用P507与TBP协同萃取中重稀土,然后采用P204与TBP协同萃取轻稀土的工艺,并进行了萃取、反萃取试验,得出以下结论。在试验原料条件下,采用二级萃取工艺,当相比A/O=10/1、pH值4.0、常温、P507体积分数35%、TBP体积分数5%时,P507+TBP对中、重稀土的萃取率较佳,均能达到90%以上;采用二级萃取工艺,在P204体积分数35%、TBP体积分数5%、相比A/O=15/1、常温、萃取时间5 min的条件下,P204+TBP对轻稀土的萃取率达到97%。P507与P204的负载有机相在适当的酸性条件下,P507负载有机相经二级逆流反萃、P204负载有机相经三级逆流反萃后均可得到高浓度的稀土富集液,浓度值达到直接进入萃取分离线的要求。该研究在低能耗、低试刘消耗条件下实现了稀土提取利用及初步分离,所生产的氯化稀土溶液可以直接进入稀土分离厂进行分离提纯,为高浓度稀土回收分离提供了参考。  相似文献   

8.
从钼尾矿中回收低品位白钨矿选矿试验研究   总被引:5,自引:0,他引:5  
对钼尾矿中的白钨进行了综合回收试验研究。采用适宜于低品位白钨浮选的新型捕收剂EP进行白钨粗选试验研究,采用"彼得罗夫法"对白钨进行了加温精选试验,研究表明,粗精矿中含有大量的方解石、白云石是影响白钨精选的主要脉石矿物,入选粗精矿品位是影响最终精矿品位的关键因素。对WO3品位为2.88%粗精矿最终闭路试验结果为白钨精矿WO3品位32.34%,回收率为71.10%。  相似文献   

9.
用高钼白钨精矿制取高纯三氧化钨工艺实践   总被引:2,自引:0,他引:2  
李伟勤  戴普 《中国钨业》2001,16(1):35-38
介绍了采用苏打压煮、NaHS除钼、叔胺萃取、蒸发结晶处理柿竹园高钼白钨精矿 ,生产高纯三氧化钨的工艺。并对加入添加剂以提高三氧化钨回收率、净化钨酸钠溶液等问题进行了探讨。  相似文献   

10.
针对某氧化钼钨粗精矿高压碱浸后得到的浸出液钼钨含量均较高、钼钨分离困难的特点,确定了钼钨浸出液镁盐净化除杂、钼钨共沉淀、干燥、钼钨酸铵制备的工艺流程,主要考察了氯化铵用量、沉淀时间、pH、温度、溶液浓度对钼沉淀率的影响。结果表明,最终获得的产品含Mo 47.57%、WO310.13%,杂质磷、砷分别为0.0027%、0.041%,产品符合生产钨钼合金的要求。  相似文献   

11.
某钼钨矿石钼、钨品位较低,其中钼含量0.36%、钨含量0.88%,-38μm占90%,矿石中矿物物相复杂、有用矿物粒度小且较为分散,矿物颗粒连生情况极其复杂。采用焙烧—化学浸出的方式回收钨、钼,开展了液固比、药剂用量、浸出温度和浸出时间的研究。研究表明:在液固比6 mg/g、氧化剂A用量10 kg/t、碱性浸出剂B和C用量分别为80 kg/t和9 kg/t、浸出时间4 h、浸出温度80℃的条件下,钼的浸出率为83.79%,钨的浸出率为39%。通过细磨强化,-20.043μm占90%,在同样条件下钼浸出率达到94.11%,钨浸出率为60.74%,取得了较好的浸出效果。  相似文献   

12.
以双氧水为络合剂,采用混合萃取剂进行了高钼钨酸铵工业料液络合萃取分离钨钼的初步试验研究。试验考察了振荡平衡时间、双氧水用量、水相平衡pH值、温度等因素对钨钼萃取分离的影响,绘制了钼的萃取等温线并探索了反萃取方法。研究结果表明,该萃取体系具有良好的萃钼能力和钨钼分离性能,混合萃取剂浓度为45%的有机相对钼的饱和萃取容量达9.2 g/L,单级萃取钼钨分离系数可达50以上,NaOH溶液能有效反萃负载有机相。  相似文献   

13.
从高钼含量的白钨精矿及复杂钨矿物原料制取高纯APT   总被引:3,自引:2,他引:1  
李洪桂 《中国钨业》2003,18(5):36-39
中国现有钨资源中73%为白钨,同时41%以上属高钼矿,且越来越复杂难选,为适应新的资源形势的要求,我们发明了新的NaOH分解法和选择性沉淀法,前者能有效地从各种钨矿物原料(包括白钨矿)浸出钨,且将大部分杂质P、As、Si抑制在渣中,后者能有效地除去杂质如Mo、Sn等。 与传统的离子交换法结合,在结晶率为95%的情况下,APT的质量优于GB10116-88APT0级标准,当处理柿竹园钨中矿(含WO_3 50%~55%)时,回收率达95%~96%,与经典法处理标准黑钨精矿相当。  相似文献   

14.
以某厂火法冶炼硅酸钙渣为原料,在前期探索试验中,采用常压高温碱煮和高温高压碱煮、碱性条件下磷酸盐浸出取得浸出效果不好的情况下,通过采用加碱焙烧-球磨浸出工艺综合回收钨钼,成功实现钨钼高回收率。由于焙烧方法需要采用高温,能耗较高,因此主要进行加碱焙烧条件试验以及探索降低焙烧温度试验研究。经过试验,找到最佳工艺为:原料与Na2CO3和Na2O2的重量之比为10∶5∶1,在800℃下联合焙烧1 h,加水球磨,钨钼的回收率能达到92%以上。  相似文献   

15.
采用N235+仲辛醇+磺化煤油萃取体系+氨水反萃体系对废石化催化剂萃钒余液进行钼的回收研究,考察了各因素对钼萃取率和反萃率的影响,并获得优化条件,同时对钼反萃液进行钼酸铵产品的制备。结果表明:在萃取条件为初始pH 2.0、萃取体系20%N235+5%仲辛醇浓度+75%磺化煤油、萃取相比O/A=1/5、萃取时间5 min的条件下,Mo萃取率达到99.23%;反萃条件为反萃相比O/A=5/1、氨水体积浓度15%、反萃时间3 min, Mo反萃率达到99.36%,反萃液中Mo浓度可满足沉钼要求;反萃液采用酸沉结晶法制备钼酸铵产品,钼以四钼酸铵产品析出,产品纯度为99.62%,达到了GB/T 3460—2007-MSA-3标准。  相似文献   

16.
采用聚合硫酸铁(PFS)法处理镍钼矿酸浸液萃钼余液中的重金属离子和化学耗氧量(COD),考察双氧水用量、PFS用量、搅拌时间、pH对余液中Zn~(2+)、Pb~(2+)、Ni~(2+)及COD含量的影响。结果表明,在双氧水用量20 mL/L、PFS用量60 mg/L、搅拌时间90 min、pH 11.0的条件下,COD可降至500 mg/L以下,去除率高达89%,重金属离子均达到GB 8978-1996污水综合排放一级标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号