首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
对分别含有高强度高斯织构和高强度立方织构状态的2种2524-T4铝合金板材的疲劳裂纹扩展速率和短裂纹扩展行为进行研究,用扫描电镜(SEM)观察疲劳试样断口形貌和疲劳短裂纹的扩展路径,研究织构类型对合金疲劳性能的影响。结果表明:高斯取向晶粒能够提高材料疲劳裂纹扩展的门槛值及增强疲劳裂纹的扩展抗力,使材料在更高的应力强度因子下发生失稳扩展;而高强度立方织构对疲劳性能的影响相对较小。在近门槛区,高斯晶粒通过裂纹偏转的形式有效阻碍短裂纹扩展,在稳态扩展区,高斯晶粒能明显降低疲劳裂纹的扩展速率,高斯织构还能延长合金疲劳裂纹稳态的扩展区,提高合金的疲劳损伤容限。因此,高强度高斯织构的2524-T4铝合金板材比立方织构的合金具有更好的疲劳性能。  相似文献   

2.
7475-T7351铝合金抗疲劳性能研究   总被引:2,自引:0,他引:2  
采用旋转弯曲疲劳试验、轴向加载疲劳试验、疲劳裂纹扩展速率试验等疲劳性能测试方法,研究了7475-T7351铝合金厚板的疲劳性能.并通过透射电镜(TEM)和扫描电镜(SEM)分析了该合金的显微组织和疲劳断口形貌.结果表明:7475-T7351铝合金具有良好的耐疲劳损伤性能,光滑试样(Kt=1)在室温旋转弯曲和高温轴向加载条件下的疲劳极限分别为180.0和345.0 MPa,缺口试样(Kt=2.2)在室温旋转弯曲加载条件下的疲劳极限为91.9 MPa;合金厚板材料在高温下缺口敏感性有所降低;国产材料裂纹扩展速率随应力比增加而增大,裂纹扩展门槛值减小;国产7475铝合金与进口材料在裂纹稳定扩展阶段裂纹扩展行为基本相当;在近门槛值附近不同应力比下的裂纹扩展门槛值略有差别.  相似文献   

3.
测试并对比了掺杂微量稀土Er中高Mg铝合金5E83和5E06冷轧板的疲劳性能,运用XRD、扫描电镜(SEM)以及能谱(EDS)等对合金组织与疲劳断口进行表征,探讨了Er与Mg元素对Al-Mg合金疲劳断裂行为的影响.结果表明:合金中Mg固溶量的增加可提高合金疲劳强度并减缓裂纹扩展速率.合金中Er含量超过其固溶度后,其含量的增加也可减缓裂纹的扩展,这归结为粗大析出物Al3Er能够使裂纹偏折并发生闭合从而有效阻碍裂纹的扩展.  相似文献   

4.
以部分扩散预合金Fe-2Cu-2Ni-1Mo-1C粉末为原料,利用模壁润滑温压技术与3种烧结工艺制备合金材料,研究不同烧结工艺下合金的疲劳性能。结果表明:3组不同烧结工艺制备的试样在104~109循环周次下的应力幅值-循环周次(S-N)曲线均为一条连续下降的曲线,不存在传统疲劳概念上的疲劳极限,只存在条件疲劳极限;在107循环周次下,3组试样的条件疲劳极限分别为280、264和239 MPa。断口分析发现,3组试样的疲劳裂纹均萌生在试样表面的棱角处,且均表现为多源萌生;疲劳裂纹扩展以穿晶断裂为主,不同的组织对裂纹的扩展有明显的影响;扩展区存在典型的解理和疲劳辉纹形貌;断裂区有塑性韧窝出现。  相似文献   

5.
测定不同晶粒尺寸、γ'相以及不同Hf含量的粉末高温合金FGH97在650℃高温条件下的疲劳裂纹扩展速率,并将其与FGH95和FGH96两代粉末合金的疲劳裂纹扩展速率进行对比.用定量分析的方法对FGH97合金在疲劳断裂各个阶段的行为特征进行分析.较大晶粒尺寸的FGH97合金具有较低的裂纹扩展速率,合理的二次和三次γ'相匹配析出,可以获得较高的疲劳寿命;Hf元素的添加使合金的整体疲劳寿命增大;FGH97合金与FGH95和FGH96相比,具有较高的疲劳裂纹萌生抗力,更低的高温疲劳裂纹扩展速率.   相似文献   

6.
采用模壁润滑温压制备部分预合金Fe-2Cu-0.5Mn-1C烧结材料,设计材料的弯曲超声疲劳试样尺寸并研究对称弯曲超声疲劳行为,测试了材料在105~108周次下的疲劳性能。结果表明Fe-2Cu-0.5Mn-1C材料弯曲超声疲劳的条件疲劳极限存在,在106,107和108周次下相应的疲劳强度为402 MPa,331 MPa和273 MPa。疲劳裂纹一般在孔隙或夹杂物上萌生。超声疲劳断口的不同区域呈现出不同的特征。高疲劳应力时,裂纹源区位于靠近试样表面的孔隙或夹杂物处;低应力时,裂纹源区移动到材料亚表面或材料内部。裂纹扩展区出现了不规则分布的微观疲劳辉纹形貌,裂纹瞬断区中出现了解理面和韧窝等形貌。  相似文献   

7.
采用粉末锻造工艺制备Fe-2Cu-0.5C-0.11S材料,对该材料进行超声疲劳试验,研究材料的超声疲劳行为,并对疲劳断口形貌进行观察与分析。结果表明,Fe-2Cu-0.5C-0.11S材料不存在无限疲劳寿命,只存在条件疲劳强度,在10~5,10~6,10~7,10~8周次下材料的疲劳强度分别为543.6,437.7,351.1和281.7 MPa,疲劳断口由裂纹源区、裂纹稳定扩展区和瞬断区组成。裂纹源区内存在扇形分布的疲劳台阶和短小撕裂棱,在疲劳应力较大时主裂纹源位于材料表面,应力较小时主裂纹源位于材料内部;裂纹稳定扩展区内存在大量方向不规则的疲劳辉纹,疲劳辉纹的间隔随疲劳应力减小而减小;瞬断区整体较粗糙且不平整,内部存在大量韧窝。  相似文献   

8.
通过显微组织的观察分析、断口形貌的观察和硬度测定,分析造成柔轮疲劳断裂失效的原因。结果表明,失效柔轮的显微组织为回火屈氏体,柔轮上存在较严重的3级带状组织。虽然存在MnS和Al2O3夹杂物引起的4.42μm微孔,但由于其尺寸和数量较小,不是导致其断裂的主要原因。样品的晶粒整体上较粗大,断口裂纹处晶粒更粗大且更不均匀,断口裂纹处的晶粒尺寸是远离断口晶粒的1.4倍。晶粒粗大使晶界面积减小,导致塑性变形不均匀,易产生应力集中,从而产生初生裂纹,同时也不利于阻碍裂纹的扩展,导致样品发生断裂失效。因此,原奥氏体晶粒粗大是导致柔轮疲劳断裂主要原因。可通过循环热处理或增加正火预处理,达到细化晶粒的作用。  相似文献   

9.
α+β两相区轧制的TC4钛合金丝材经不同工艺热处理后,获得等轴组织、双态组织和片层组织,研究了微观组织特征及其对合金拉伸性能和疲劳性能的影响。结果表明:等轴组织α晶粒最为细小且具有较高的位错密度,表现出最高强度;双态组织α相较等轴组织显著长大,位错密度明显降低,具有最好的工艺塑性;片层组织原始β晶粒粗大,塑性最低。3种组织中片层组织疲劳性能最好,当裂纹长度<250μm时,不同显微组织对应的裂纹扩展速率差异较大,片层组织的扩展速率最低,等轴组织最高;当裂纹长度>250μm时,3种组织的裂纹扩展速率无显著差异。综合考虑TC4钛合金丝材的力学性能和工艺塑性,应选择双态组织作为产品的最终组织状态。  相似文献   

10.
改善高强度和超高强度变形铝合金半成品疲劳性能是人们普遍感兴趣的问题,提高材料的疲劳性能是延长零件使用寿命和开拓其应用范围的关键。近年来各国在这方面开展了许多研究工作,如MKnobaib等研究了高强度铝合金的腐蚀疲劳;y·w·Kim等研究了IN-9051 AI-Mg合金晶粒尺寸对疲劳裂纹扩展速度的影响;有人研究过热处理制度对铝合金疲劳抗力的影响;M·E·  相似文献   

11.
The development of short fatigue cracks in a 2524-T3 alloy is studied under cyclic tension conditions. Flat specimens with a stress concentrator in the form of a central hole are analyzed. The replica technique is used to determine the microcrack parameters and to estimate the cyclic damage characteristics of the alloy in the stress concentrator zone. The experimental results are compared to the fatigue lives estimated by a calculation-experimental method using the NASGRO software package. The experimental fatigue life at the stage of short crack initiation is found to be significantly shorter than the calculated fatigue life.  相似文献   

12.
This study investigated the microstructure and fatigue properties of hydroformed sections of the 5754 and 6063 aluminum alloys. The second-phase particles in 6063-T7 are identified as a mixture of Al12Fe3Si and Al9Fe2Si2, with a slightly higher fraction of the former. The constituent particles in the 5754 alloy are Al4Mn-type hexagonal compounds, where Mn is partially substituted by various other elements, resulting in Al4(Fe,Mn,Si,Cr). The results show that despite its lower yield strength, the hydroformed 5754 alloy has higher ultimate tensile strength, ductility, and, more importantly, higher fatigue resistance than the 6063 material. Both crystallographic stage I and noncrystallographic stage II cracking are found in the 6063-T7 samples, but only stage II cracking is observed in the 5754 alloy. This implies that the low fatigue strength of 6063-T7 is related to its relatively large grain size, resulting in rapid stage I crack propagation. The higher fatigue lives of the 5754 alloy compared to the 6063 alloy in both the low- and high-cycle life regimes are due to the increased fatigue-crack-initiation and propagation resistance of the 5754 alloy and its probable cyclic strain-hardening behavior.  相似文献   

13.
分析了A356合金和经T6热处理的A356-T6合金的组织与性能,结果表明,A356-T6合金的整体抗拉强度几乎不受固溶时间的影响,且其屈服强度和抗拉强度显著提高,但随着固溶时间的增加,其伸长率逐渐降低。随着热处理时效从4增加至48 h,A356-T6合金的屈服强度增加了约183.25%,抗拉强度增加了约71%。通过对铸态A356轮毂的弯曲力矩耐久性试验,由SEM分析结果可知,疲劳裂纹存在区域有组织不均匀的现象,判断此部位造型设计与冷却系统设计不良,导致此区域形成热点成为最后凝固区,造成该区域的共晶Al-Si相堆积及粗化共晶Si存在。因此,改善铸态组织不均与微缩孔形成以及降低铁基金属间化合物,有助于改善A356合金的组织与力学性能。  相似文献   

14.
Environmental fatigue crack propagation in 2024-T3, 7075-T6, and 7178-T6 has been studied at low levels of cyclic amplitude of stress intensity, ΔK. Both wedge force loading and remote loading techniques were employed to achieve the desired ΔK levels, and preliminary experiments were designed to test their compatibility. Testing was carried out in humid air, distilled water, and 3.5 pct sodium chloride solution, and the observed crack growth rates compared with those in desiccated air. Later studies were also conducted in an inert reference environment with a total water content of less than 2 ppm. When the data are plotted as log ΔK vs log d2a /dN, alloy 2024-T3 exhibits a marked slope transition, alloy 7075-T6 a slight slope transition, and alloy 7178-T6 a rectilinear behavior throughout the whole range of ΔK studied. The basic shape of these curves is discussed in terms of state-of-stress conditions at the crack tip, frequency effects, environmental effects, strain rate sensitivity, and metallurgical structure. An attempt is also made to correlate the rate of fatigue crack propagation in a particular environment and at a particular ΔK level with the fracture topography.  相似文献   

15.
In this research, the effects of clamping force on the fatigue life of 2024-T3 aluminum alloy double lap bolted joints have been studied experimentally and numerically. To do so, three sets of the specimens were prepared and each subjected to torque of 1, 2.5 and 5 N m and then fatigue tests were carried out under different cyclic longitudinal load levels. In the numerical method, finite element ANSYS code was used to obtain stress distribution in connection plates due to clamping force and longitudinal applied loads. Numerical simulation and experimental results revealed that the fatigue life of double lap bolted joints were improved by increasing the clamping force due to compressive stresses which appeared around the hole.  相似文献   

16.
In this paper, the results of a recent study aimed at understanding the influence of orientation on high cycle fatigue properties and final fracture behavior of alloy steel Pyrowear 53 is presented and discussed. This alloy steel has noticeably improved strength, ductility, and toughness properties compared to other competing high strength alloy steels having a near similar chemical composition and processing history. Test specimens of this alloy steel were precision machined and conformed to the specifications detailed in the ASTM standards for tension testing and stress‐controlled cyclic fatigue tests. Test specimens were prepared from both the longitudinal and transverse orientations of the as‐provided alloy steel bar stock. The machined test specimens were deformed in cyclic fatigue over a range of maximum stress and under conditions of fully reversed loading, i.e., at a load ratio of ?1, and the number of cycles‐to‐failure recorded. The specific influence of orientation on cyclic fatigue life of this alloy steel is presented. The fatigue fracture surfaces were examined in a scanning electron microscope to establish the macroscopic fracture mode and to characterize the intrinsic features on the fatigue fracture surfaces. The conjoint influence of microstructure, orientation, nature of loading, and maximum stress on cyclic fatigue life is discussed.  相似文献   

17.
The low-cycle fatigue behavior of ULTIMET®, a wrought cobalt-based alloy, was studied at the temperatures of 294, 873, and 1,173 K under isothermal conditions. A constant strain rate of 3.0×10?3 s?1 was used with fully reversed strain ranges between 0.4 and 2.5 pct. Observations on the strain vs fatigue-life curves, cyclic stress-strain responses, and fatigue fracture modes were obtained. The microstructure evolution of the ULTIMET alloy was characterized using X-ray diffraction, scanning-electron microscopy (SEM), and transmission-electron microscopy (TEM). For fatigue tests performed at 294 and 873 K, plastic-strain-induced, fcc-to-hcp phase transformations were observed. Twinning and carbide precipitation were found to contribute to the significant cyclic hardening observed at 1,173 K.  相似文献   

18.
In situ three-dimensional (3-D) X-ray synchrotron tomography of fatigue crack growth was conducted in a 7075-T6 aluminum alloy. Local measurements of da/dN were possible with the 3-D data sets obtained from tomography. A comparison with fatigue striation spacings obtained from scanning electron microscopy of the fracture surfaces yielded excellent correlation with da/dN obtained from tomography. The X-ray tomography technique can be used to obtain a highly accurate and representative measurements of crack growth locally in the microstructure of the material.  相似文献   

19.
Axial fatigue tests were performed on a 7075-T6 aluminum alloy in tension-compression and under superimposed positive mean stresses in dry air and in aqueous 0.5N NaCl solution. Both corrosive environments and positive mean stresses resulted in lower fatigue lives but no interaction between these variables was observed. Crack initiation in air occurred at electropolish pits at inclusion/alloy interfaces and propagated primarily in a Stage I (crystallographic) mode. Crack initiation in NaCl solutions occurred at heavily corroded regions surrounding non-metallic inclusions and propagated in a cleavage mode normal to the direction of applied stress. The relative number of cycles to crack initiation is shown to be a function of the magnitude of cyclic stress but not of mean stress. Similarly, the percentage of reduction in fatigue life due to corrosive environments is approximately constant at all mean stress levels. These data indicate that fatigue crack initiation is primarily related to mobile dislocations associated with cyclic deformation. Crack propagation on the other hand appears to be controlled by the maximum applied stress. A model for environment assisted cracking is presented which suggests that hydrogen induced cleavage is responsible for the degradation in fatigue properties of this alloy. Formerly Research Assistant, Materials Division, Rensselaer Polytechnic Institute, Troy, N. Y. 12181.  相似文献   

20.
PM steels with density higher than 7.5?g?cm?3 were prepared from binder-treated powder, and the effects of alloying elements and microstructure on dynamic performance were studied. Although the addition of 1.5?wt-% Cu improves the tensile strength, it impairs toughness of the alloy by the formation of low-toughness pearlite. The 0.5?wt-% Cr addition promotes the formation of Ni-rich martensite and bainite at the expense of pearlite, which is beneficial to strengthen and homogenise the microstructure. The 0.5Cr alloy exhibits improved tensile strength and fatigue strength without sacrificing impact toughness, which exhibits high potential to be used for dynamic and cyclic loading applications. The tensile strength and fatigue endurance strength under 107 cycles of 0.5Cr alloy achieve 1350 and 562?MPa respectively, and impact energy is as high as 21.1?J. The enhanced fatigue life is attributed to the high density, smaller pore size, rounder pores and composite-like microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号