首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用小直径盲孔法,对车轮辐板表面下残余应力分布状态进行测试和分析。通过对喷丸车轮辐板表面下残余应力分布状态和未喷丸车轮辐板表面下残余应力分布状态的对比,分析喷丸对车轮辐板表面下残余应力分布状态的影响。试验研究结果表明,喷丸处理能够有效改善车轮辐板表面残余应力状态,从而提高车轮的安全使用性能。  相似文献   

2.
采用多种最终加工工序组合,在TC17钛合金叶片表面引入不同表面完整性状态,研究最终加工工序对叶片表面形貌、平均粗糙度、残余应力的影响。结果表明:仅振动光饰处理后,表面平均粗糙度在0.2μm以下,表面残留有磨料运动痕迹,残余应力影响层深度约为30~40μm,表面残余应力仅-200 MPa左右;不进行振动光饰处理时,陶瓷丸喷丸比玻璃丸喷丸后叶片表面粗糙度更佳,喷丸后叶片表面Kurtosis值接近3,本研究中残余应力影响层深度约为100μm,表面残余应力在-750~-850 MPa之间;喷丸后进行振动光饰可消除叶片表面的喷丸弹坑,平均粗糙度减小到0.2μm以下,残余应力影响层深度与未经振动光饰处理的相当,表面残余应力变化小。当加工痕迹被喷丸消除时,叶片表面Kurtosis值接近3,这说明弹坑底部圆滑,因此认为Kurtosis值可作为表征喷丸表面的特征粗糙度参数。  相似文献   

3.
湿法喷丸处理YG8合金表面残余应力分析及对性能的影响   总被引:2,自引:0,他引:2  
采用湿法喷丸工艺对YG8硬质合金进行表面处理,旨在提高材料的性能.通过X射线衍射法对不同喷射条件处理的合金表面残余应力及其深度分布进行了分析,并研究了残余应力对力学性能的影响.研究表明,湿法喷丸处理在硬质合金表层内产生残余压应力,喷射压力和喷射时间对残余应力及分布有显著影响,该应力及分布有利于材料性能的提高.应用该处理方法,在喷射压力为0.5MPa、喷射时间为2min的条件下,硬质合金的抗弯强度提高约11%,洛氏硬度为89.64HRA,磨损量减少36%.  相似文献   

4.
综合考虑了车轮喷丸标准的要求,对两种喷丸标准的工艺制作进行了分析,用有限元方法计算出Th+V2工况下最大拉应力的径向位置,并试验出喷丸强度为约为10C和8C的数据,制作出喷丸饱和曲线。分析车轮喷丸覆盖率的确定过程,并用Avrami估算法分别计算出强度为10C和8C时达到100%覆盖率所需的时间。对不同喷丸强度和不同覆盖率的喷丸辐板表面残余应力测试数据进行比较,得出10C喷丸强度产生的残余应力要优于8C的喷丸强度产生的残余应力,并证明并不是喷丸的覆盖率越大越好。  相似文献   

5.
本文利用Aichelin多用炉对18CrNiMo7-6钢渗碳淬火;利用KXS-226P型数控喷丸机进行强化喷丸试验;利用Proto-iXRD型X射线应力分析仪对表面残余应力进行测定。结果表明,渗碳淬火试样在层深0.07mm处残余应力最大,其值为-196Mpa;渗碳淬火+强化喷丸试样在层深0.2mm处残余应力最大,其值为-887Mpa;渗碳淬火+强化喷丸处理后M等级3级,硬化层深3.78mm。同时渗碳淬火+强化喷丸后满足技术要求表面硬度58~62HRC,马氏体及残留奥氏体≤4级,碳化物≤3级。强化喷丸明显提高表面残余应力和层深。  相似文献   

6.
研究了磨削、一次喷丸、二次喷丸3种表面加工方法对TC4钛合金表面完整性及高周疲劳性能的影响规律,采用白光干涉仪、X射线残余应力测试仪对经不同方法加工的试样的表面形貌、表面粗糙度和表面残余应力分布等表面完整性参数进行了表征。采用旋转弯曲疲劳试验机分别测试了不同方法加工的光滑试样(应力集中系数Kt=1)和缺口试样(Kt=2)的旋转弯曲疲劳S-N曲线。结果表明,相比磨削,一次喷丸和二次喷丸处理后TC4钛合金光滑试样和缺口试样的疲劳极限均显著提高,TC4钛合金的疲劳缺口敏感性下降。另外,二次喷丸的疲劳极限增益效果优于一次喷丸的,原因是二次喷丸在TC4钛合金表面形成了更优的残余压应力场分布和更低的表面粗糙度。  相似文献   

7.
喷丸处理对TiAl合金拉伸性能的影响   总被引:6,自引:1,他引:5  
采用氧化锆颗粒在不同喷射压强下对成分为Ti-47.5Al-2.5V-1.0Cr(%,原子分数)的铸造TiAl合金进行喷丸处理实验,分析试样表面状态变化及其对室温拉伸性能的影响,结果表明,喷丸处理增加了表面粗糙度,改变了试样的表面形貌,使表面损伤痕迹的大小和方向均发生变化,且在试样的表面形成残余压应力,这些表面性质的改变程度均随喷射压强的提高而增大;喷丸试样的抗拉强度因表面压应力的存在而有所提高,但由于表面损伤和表面压应力的综合作用,其室温拉伸塑性在1×105Pa喷射压强下增加,而在2×105 Pa和2.5×105Pa的喷射压强下回落到原拉伸塑性水平.  相似文献   

8.
以超高抽油杆为工程背景,对表面感应淬火和喷丸歼余应力的产生过程及在外加拉伸载上,残余应力的衰减行为进行了数值及实验研究,结果表明:当感应淬火和喷丸强化前,杆体屈服强度高于一定值后,其硬化层形成的残余应力基本一致;残余应力的衰减以决于心部屈服强度,心部屈服强度越高,使残余应力发生明显衰减的外加应力就越高;使残余力明显衰外加应力介于整体杆拉伸强度的σ0.02和σ0.2之间,经表面感应淬火和喷丸强化后,  相似文献   

9.
研究了激光冲击喷丸(LSP)对2195铝锂合金组织结构及抗应力腐蚀性能的影响。研究结果表明激光冲击处理后,2195铝锂合金表层晶粒细化到纳米量级,多次冲击能使表层晶粒进一步细化。残余应力测试结果表明激光冲击喷丸能够引入残余压应力,多次冲击后残余压应力数值更大。此外,应力腐蚀实验结果表明激光冲击喷丸能够有效提升2195铝锂合金的抗应力腐蚀性能。在应力腐蚀环境中,激光冲击喷丸诱生的表层残余压应力和晶粒细化层能够阻碍裂纹的萌生和扩展,防止应力腐蚀断裂。  相似文献   

10.
为了提高TB6钛合金零件的疲劳抗力,研究了喷丸强化对TB6钛合金疲劳性能的影响,并采用白光干涉仪、X射线应力测量仪、显微硬度计及扫描电子显微镜等仪器对其表面完整性进行分析,探讨喷丸强化机制。结果表明:相比未处理的试样,喷丸处理试样的旋转弯曲疲劳寿命显著提高。喷丸强度对TB6钛合金的疲劳性能影响显著,随着喷丸强度的增加,残余压应力层和硬化层深度相应增大,对疲劳性能有利;而同时表面粗糙度也在增大,局部应力集中效应会抑制疲劳性能的改善。  相似文献   

11.
Shot peening involves bombarding the surface of a metal part with small spherical media called shot. It creates a uniform layer of compressive residual stress at surfaces and considerably increases the part life. This study is devoted to an evaluation of the edge (corner) effects in the shot peening process. Geometry variations in metal parts such as edges or corners cause variance in the residual stress profile induced by shot peening. This paper presents the finite-element modeling and scheme that we use to simulate the shot peening process by both single impact and multiple impacts for part geometries with different edge radii. The results achieved show that, after the same shot peening process, a part with a relatively larger edge radius results in a satisfactory residual stress profile which could equal or exceed that expected for a part with a smaller edge radius. The results may enable the automated edge preprocess step for shot peening with an easily machined large radius to reduce cost and improve productivity.  相似文献   

12.
Using a new system shot peening and/or stress peening in an air blast machine at elevated temperatures is feasible. The effects of conventional shot peening, stress peening, warm peening and stress peening at elevated temperatures on the characteristics of regions close to the surface, on the stability of residual stresses and on the fatigue strength of a quenched and tempered AISI 4140 steel (German grade 42 CrMo 4) are presented. The alternating bending strength is increased by stress peening, warm peening and especially the combination of both compared to conventional shot peening. These effects are due to the residual stresses induced and the stability of the dislocation structure, which is highly affected by strain ageing effects.  相似文献   

13.
This paper investigates the effect of shot blasting and shot peening parameters on residual stresses induced in connecting rod. Compressive residual stresses are induced using shot peening to increase fatigue life of connecting rod. Shot peening is also responsible for increase in surface roughness. Surface roughness is detrimental for fatigue life of the connecting rod. This necessitates shot blasting to reduce surface roughness. Shot peening and shot blasting processes are analysed to find optimum process parameters which will induce required value of compressive residual stress on the surface of connecting rod. Compressive residual stresses induced in the connecting rod specimen have been experimentally measured using X-ray stress analyser. The experimental results have been analysed using grey relational analysis to find optimum values of process parameters for target value of compressive residual stress and surface roughness. The experimental investigation and the analysis of it have resulted in achieving the desired value of compressive residual stress, which is 10.5% higher over the existing connecting rod. Surface roughness also decreases to 3.84 Ra which is 8.5% lesser than specified value to achieve better fatigue life.  相似文献   

14.
An analysis of residual stress fields caused by shot peening   总被引:9,自引:0,他引:9  
In this article, the compressive residual stress field (CRSF) introduced by shot peening was studied comprehensively. The 40Cr steel, which is widely applied in industry materials, was used and shot peened under different conditions. The experimental results show that the maximum of compressive residual stress field for a given material is almost the same even under different shot peening techniques and the surface residual stress values are dependent on both the mechanical properties of target materials and peening parameters.  相似文献   

15.
刘祖林  李华飞 《特殊钢》1996,17(5):23-25
研究了55SiMnVB弹簧钢板疲劳断口特征及裂扩展过程。结果表明,喷丸强化在表层产生的残余压应力可明显提高疲劳抗力,增强裂纹闭合效应,降低裂纹扩展速度。  相似文献   

16.
In this study, the fatigue properties of a shot-peened Zr-based amorphous alloy containing ductile crystalline particles were investigated, and fatigue processes were analyzed and compared with those of a non–shot-peened (as-cast) alloy. The microstructural analysis results of the shot-peened alloy surface indicated that the flexion and microstructural deformation were observed as the hot-peening time or pressure increased. However, the compressive residual stress formed on the shot-peened surface was approximately half of the ultimate tensile strength and was not varied much with shot-peening time or pressure. The fatigue limit and fatigue ratio of the shot-peened alloy were 368 MPa and 0.24, respectively, which were considerably higher than those of the as-cast alloy. This was because the compressive residual stress formed by the shot peening induced the initiation of fatigue cracks at the specimen interior instead of the specimen surface and, thus, enhanced the overall fatigue limit and fatigue life. These findings suggested that the shot peening was useful for improving fatigue properties in amorphous alloys.  相似文献   

17.
Shot peening is a surface engineering process acknowledged for its potential to develop fatigue strength and erosion-corrosion resistance of metallic materials. In the present study, a 3-D finite element model is employed to predict the effective parameters through a single shot impact and the accuracy of the simulation is validated using previous literatures. In order to induce uniform compressive residual stress patterns across the specimen, processing parameters such as shot velocity, impact angle and friction coefficient should be controlled. It is observed that by increasing the shot velocity and the friction coefficient, the depth of compressive residual stress increases. Moreover, a comparative study between isotropic and kinematic hardening models is performed to evaluate the significant role of the hardening models on the compressive residual stress. It is observed that the kinematic hardening model shows better compatibility with the experimental results compared to the isotropic hardening.  相似文献   

18.
Reversed-bending fatigue tests of quenched and tempered AISI 6150 steel were conducted in dry air and in aqueous 3 pct NaCl. The 3 pct NaCl environment drastically reduced fatigue life but two different shot peening treatments were found to improve the corrosion fatigue life over that of unpeened samples. Multiple fatigue crack initiation occurred at very distinct locations in both the unpeened and the peened specimens fatigued in 3 pct NaCl. Fatigue crack propagation from each initiation site occurred first on flat facets normal to the stress axis and then by a more ductile mechanism after the initiation facets had linked. The average size of the corrosion fatigue initiation facets in the peened specimens was much smaller than that of the unpeened specimens; however, the number of initiation sites was greater in the peened specimens. It is believed that the beneficial effect of the shot peening results from significantly reduced early fatigue crack propagation rates in the compressive residual stress layer at the surface. Formerly Research Assistant, Materials Department, University of Wisconsin-Milwaukee  相似文献   

19.
通过二元影像测量仪观察锯条干喷处理后的表面压应力、覆盖率、齿尖状况,不磨合锯切GCr15棒材的齿尖崩刃情况和锯切45#钢和空转疲劳寿命试验研究表面处理干喷砂工艺参数(压缩空气压力0.1~0.4MPa,运行速度4~1m/min)对M42(/%:1.08C,1.5W,9.4Mo,3.8Cr,1.2V,8.0Co)-D6A(/%:0.48C,1.0Mo,1.1Cr,0.1V,0.6Ni)双金属带锯条性能的影响。结果表明,锯条经合适的参数-压缩空气压力0.3MPa和运行速度3m/min,背部表面覆盖率达到100%,干喷后,齿尖形成稳定的圆角,承受切割和振动的冲击力,以提高锯条齿尖的耐磨性,齿部的平均使用寿命提高66%,背部疲劳试验寿命提高45%~70%。  相似文献   

20.
The effects of laser-shock processing (LSP) on the microstructure, hardness, and residual stress of Hadfield manganese (1 pct C and 14 pct Mn) steels were studied. Laser-shock processing was performed using a Nd: glass phosphate laser with 600 ps pulse width and up to 120 J/pulse energy at power density above 1012 W/cm2. The effects of cold rolling and shot peening were also studied for comparison. Laser-shock processing caused extensive formation of ε hexagonal close-packed (hep) martensite (35 vol pct), producing up to a 130 pct increase of surface hardness. The surface hardness increase was 40 to 60 pct for the shot-peened specimen and about 60 pct for the cold-rolled specimen. The LSP strengthening effect on Hadfield steel was attributed to the combined effects of the partial dislocation/stacking fault arrays and the grain refinement due to the presence of the ε-hcp martensite. For the cold-rolled and shot-peened specimens, the strengthening was a result of ε-hcp martensite and twins with dislocation effects, respectively. Shot peening resulted in a relatively higher compressive residual stress throughout the specimen than LSP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号