首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
根据张力减径过程的变形特点,利用数值仿真技术建立了三维弹塑性有限元分析模型,研究无缝钢管张力减径产品的壁厚及外径分布.通过研究成品钢管中部断面上的横向壁厚分布,分析了内部多边形程度;通过研究头尾两端的纵向壁厚分布,分析了头尾增厚段切除长度,并与试验结果进行对比验证,为提高产品质量、减小切头损失提供了离线研究手段.  相似文献   

2.
通过对典型规格张力减径管头、尾增厚段壁厚分布形态的实测与分析,给出了反映增厚段壁厚变化规律的数学解析式,为切头、尾量的控制和预报提供了依据。  相似文献   

3.
张力减径管端增厚段壁厚分布规律的研究   总被引:2,自引:1,他引:1  
通过对典型规格张力减径管头、尾增厚段壁厚分布形态的实测与分析,给出了反映增厚段壁厚变化规律的数学解析式,为切头、尾量的控制和预报提供了依据。  相似文献   

4.
介绍了宝钢分公司钢管厂在无缝钢管张减过程壁厚控制中实现的前馈自适应控制技术。该技术利用准确料流跟踪所获得的对应来料荒管的管坯称重、连轧机后的测长数据,计算得到来料荒管的壁厚数据,然后根据张减机壁厚分布规律与钢管初始壁厚的关系,在轧制过程中在线计算和调整对应的各机架轧辊的轧制转速分布,实现张减机平均壁厚的前馈自适应控制,尽量减少由来料荒管壁厚偏差所造成的张减成品钢管壁厚偏差。  相似文献   

5.
在传统理论基础之上,依据微积分原理,采用线性简化模型及定积分方法,深入分析了产品壁厚分布状态,推导得出了管材纵向壁厚控制计算模型,并通过调整定径工序张力改进管体壁厚分布状态,实践结果表明,可有效提高产品成材率1%~3%,且达到了管体壁厚100%合格的控制目标。  相似文献   

6.
椭圆孔型张减过程模拟及横向壁厚分布预测   总被引:4,自引:0,他引:4  
通过对宝钢钢管厂152.5BO椭圆孔型系统主变形机架生产不同壁厚管子的轧制过程进行三维弹塑性有限元模拟,得出经减径后管子沿圆周方向的壁厚分布不均,产生内多边形的缺陷,随着总减径率和壁厚的增加,引起内多边形的程度增大。根据模拟结果对152.5BO椭圆孔型系生产不同规格的管子引起管子在沿圆周方向的壁厚不均进行预测。  相似文献   

7.
简要介绍了高频焊接-张力减径生产工艺,通过试生产阶段壁厚控制实践,分析了带钢壁厚精度及张减机参数设定对壁厚精度的影响。  相似文献   

8.
在前期材料实验的基础上对TC4钛合金负角度零件超塑成形过程进行仿真,获得压力-时间曲线和壁厚分布,并根据仿真结果中接触摩擦力分布情况,预测了模具磨损。对仿真获得的压力-时间曲线进行修正,并将修正后曲线作为实际加载曲线进行超塑成形实验,获得负角度零件。比较了零件型腔底端壁厚的实际结果与仿真结果,同时,研究了成形零件的负角度壁壁厚分布、显微组织、力学性能。结果表明:取件温度为300℃时,零件外形及表面质量较好;实际零件型腔底端壁厚分布与仿真结果趋势相同,两者最大误差为4.4%;零件最小壁厚在负角度过渡圆角处,其值为0.66 mm,最大减薄率为67%;负角度壁壁厚标准差为0.186 mm,说明此部位壁厚分布比较均匀;成形后材料的晶粒尺寸长大明显,而室温屈服强度、抗拉强度、延伸率从原始材料的951,1045 MPa,13.9%下降至853,955 MPa,10.8%,说明经过超塑成形后,材料由于晶粒长大而导致力学性能下降。  相似文献   

9.
根据无缝钢管张减过程的变形特点,利用MSC.Marc软件建立了三维热力耦合有限元分析模型,对18机架张力减径试轧产品进行数值模拟,模拟结果与实测数值的对比表明建立的分析模型实用可靠,精度较高.通过研究各机架出口断面不同点的壁厚变化,得出减径后钢管横向壁厚分布不均,探讨了内六方缺陷产生的原因.该模型的建立为分析产品缺陷、指导工艺设计提供了依据.  相似文献   

10.
张力减径机不同孔型横向壁厚分布的有限元模拟分析   总被引:7,自引:0,他引:7  
周晓岚 《宝钢技术》2004,(4):30-32,11
借助有限元分析软件模拟钢管张力减径的轧制过程,由3种不同张力减径机孔型轧制的同一规格钢管产品的横向壁厚分布的比较表明,采用宝钢专有技术设计的新孔型轧制的钢管与原有的德国传统孔型轧制的钢管相比,其横向壁厚较为均匀,并对钢管"辊印"缺馅的产生有抑制作用.  相似文献   

11.
热轧带钢局部高点对冷轧带钢板形的影响   总被引:3,自引:0,他引:3  
热轧带钢局部高点对冷轧带钢板厚和内应力分布具有重要影响。采用B3样条函数拟合带材厚度横向分布,定量研究热轧来料局部高点对冷轧带钢板厚和内应力分布的影响。研究结果表明:轧后带钢局部高点高度及附加张应力的大小与来料高点高度成正比,随总轧制压下率的增大而减小。  相似文献   

12.
本文通过实测,研究了同径异步轧制厚度小于1 mm的黄铜带时,单位压力沿纵向的分布规律,并系统地分析了各轧制参数对张直异步轧制和无张力异步轧制单位压力分布的影响。结果表明,异步轧制单位压力分布仍具有峰值;搓轧区占变形区比例x越大,异步轧制的降压效果和摩擦峰的削减作用越大;张直异步轧制厚度小于1 mm的黄铜带时,两辊侧单缸压力分布基本相同,但在无张力异步轧制时,普遍存在两辊则单位压力分布不对称现象。以上问题的研究,对更深入地认识异步轧制的力学特征,完善异步轧制理论具有重要意义。  相似文献   

13.
 针对全浮动芯棒连轧管机组孔型系统的修改过程,通过生产实验实时记录力能参数,并离线抽取荒管获得钢管壁厚分布曲线,随后进行对比,得到如下结论:连轧钢管壁厚分布具有螺旋形特征,纵向上最大和最小壁厚以波峰与波谷形式交替出现;孔型修改后,钢管壁厚精度降低,力能参数有所升高。分析其原因,孔型修改后,第3、5机架孔型椭圆度增大,加大了钢管压扁变形与金属横向壁厚增厚,并且机组的张力状态未能有效减弱金属横向流动趋势,最终导致壁厚不均率及力能参数升高。  相似文献   

14.
冷轧带材前张应力分布、横向厚差与板形关系   总被引:1,自引:0,他引:1  
胡国栋  孙登月  许石民  张黎光 《钢铁》1998,33(12):62-64
以现场实测前张力分布为依据,考虑了前张力对板形的影响,建立板形与横向厚差的关系。定量地解决了前张力分布对板形的影响,对于提高板形控制的计算精度很有实际意义。  相似文献   

15.
钢管微张力定减径过程有限元模拟与分析   总被引:1,自引:0,他引:1  
采用ANSYS/LS—DYNA大型通用有限元分析软件对无缝钢管张力定径过程的金属变形行为进行了模拟,较直观适时地反映了该过程的金属变形状态。得到的应力应变分布结果能够较好地解释钢管定减径过程中出现的壁厚不均等现象,模拟结果与实际生产中钢管变形行为状态基本一致。研究结果对于分析、制定和优化钢管定减径工艺制度具有较好的指导意义。  相似文献   

16.
摘要:为了解决CPE顶管机组轧制薄壁无缝管实际生产中出现的管壁拉凹问题,基于某钢管公司114mm CPE顶管机组的装备和工艺条件,借助于有限元分析软件Simufact,对42CrMo4钢管典型规格111mm×435mm顶管过程的辊模力、各机架轧件出口壁厚、应力应变及相对滑动速度进行了分析。结果表明,顶管过程中,减壁量较大的机架之间存在张力作用,机架减壁量越大,轧件在辊缝处壁厚减薄量越大;轧件在辊缝处所受到的轴向应力均为拉应力,在靠近轧件头部一段距离内轧件所受到的轴向拉应力较大,发生壁厚拉凹的倾向性增大。机架过大的减壁量和减壁率引起的轧件沿孔型宽度方向的严重不均匀变形、机架间大的张力及芯棒与轧件间过大的速度差引起的芯棒拽入力是顶管过程管壁拉凹缺陷产生的主要原因。  相似文献   

17.
摘要:通过对比2种不同变厚技术方案,确定较优方案为在常规热连轧机上利用监控AGC系统(厚度自动控制系统)。使用一般长度尺寸的一块板坯,由厚规格穿带,一旦完成就通过改变带钢目标厚度,相应改变各机架的压下辊缝,从而达到目标厚度。通过优化精轧负荷分配、卷取区域侧导板控制方式、夹送辊压力、卷筒张力等参数,末架最大轧制力从14190kN降低到12340kN,卷取夹送辊压力由68kN降低到60kN,卷筒尾部张力从450kN降低到390kN,变厚长度可控制在120m之内。利用此技术,2018年已经生产出近8000t由1.5mm变厚到1.2mm的热轧产品,而且这些产品在尺寸与性能上均能满足用户要求。实践证明,在传统热连轧机上采用变厚轧制技术生产薄规格热轧板是可行的。  相似文献   

18.
陈长科 《铝加工》2005,(6):10-12,16
在铝箔宽厚比为5300的条件下,采用大型商用显式动力学有限元分析软件ANSYS/LS—DYNA模拟了铝箔轧制状态,得到了改变前后张力时,铝箔的出口厚度、轧制压力、压下方向应变的横向分布规律,分析了张力变化对铝箔板形的影响,提出铝箔轧制宜采用的最佳张力制度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号