首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 802 毫秒
1.
高炉铸钢冷却壁冷却水管的优化研究   总被引:1,自引:0,他引:1  
针对建立高炉铸钢冷却壁的三维传热和热应力模型,采用通用有限元软件ANSYS计算了高炉铸钢冷却壁的温度场和应力场,通过数值计算分析了高炉铸钢冷却壁冷却水管形状对冷却壁热面最高温度和热应力的影响。计算结果表明:冷却水管改圆管为椭圆管后,冷却壁热面最高温度有所下降。当椭圆管横截面与圆管相同并且长短轴之比为0.6时,最高温度降低了2.8%,热面最大热应力降低了7.5%。而周长不变的椭圆管降温效果并不理想,但长短轴之比为0.4时最大热应力降低了12.8%。综合考虑各因素,把圆管做成面积相同的长短轴之比为0.55~0.65的椭圆管,可以取得比较好的冷却效果。这对于减少冷却水流量,减薄冷却壁体厚度、降低炼铁成本也有重大意义。  相似文献   

2.
结构参数对高炉冷却壁温度场及热应力分布的影响   总被引:2,自引:0,他引:2  
采用有限元分析软件ANSYS计算并分析了不同结构参数(冷却水管形状和直径、冷却水管间距、冷却壁镶砖厚度及冷却壁壁体厚度)对冷却壁最高温度及热应力分布的影响.结果表明,影响冷却壁最高温度的因素由强到弱依次为:管间距→内径→壁厚→嵌砖厚度→水管形状.  相似文献   

3.
结构参数对高炉铸钢冷却壁温度及热应力分布的影响   总被引:4,自引:2,他引:2  
通过采用ANSYS有限元分析软件,计算并分析了高炉冷却壁稳态传热过程及不同结构参数(冷却水管形状及直径、冷却水管间距、冷却壁镶砖厚度、冷却壁壁体的厚度)对冷却壁最高温度及热应力分布的影响。并在此基础上探讨了冷却壁结构的改进方向,为冷却壁结构的优化提供了理论依据。  相似文献   

4.
为了提高铸铁冷却壁的冷却能力,研制了一种椭圆水管铸铁冷却壁。冷却水管采用无缝钢管弯制成型后进行机械压制,从而成为所需的椭圆截面。通过对椭圆水管铸铁冷却壁进行的热态实验证明,在冷却水量不变的条件下,可以使冷却壁近热面的温度降低25℃,同时可以在设计上减薄冷却壁的厚度,从而减轻冷却壁的重量。采用椭圆水管铸铁冷却壁不但有利于高炉的顺利运行,而且可以减少冷却壁的设备投资。  相似文献   

5.
高炉铸钢冷却壁最佳结构的传热学分析   总被引:7,自引:0,他引:7  
采用通用有限元软件ANSYS计算了300 m3高炉铸钢冷却壁的温度场和应力场,数值分析铸钢冷却壁冷却水管内径、间距、壁体厚度、镶砖厚度以及冷却水流速对冷却壁热面最高温度和热应力的影响.导出了高炉铸钢冷却壁的初步优化结果:冷却水管间距200 mm,水管内径20 mm,壁体厚度为180 mm,镶砖厚度为70 mm,与之相匹配的冷却水流速为2.0 m/s.  相似文献   

6.
卢瑜  杜屏  雷鸣  张明星 《中国冶金》2014,24(1):34-40
根据2500m3高炉炉身第9段球墨铸铁冷却壁解剖结果和ABAQUS有限元分析软件热应力计算结果,分析了第9段冷却壁破损的原因。炉身第9段冷却壁破损严重主要是由冷却壁热应力引起的。冷却壁的抗拉强度、伸长率和组织形态不达标,造成冷却壁更易发生断裂。冷却水管内表面因铸造过程中的氧化和冷却水中溶解氧的腐蚀而产生的锈层,也阻碍了冷却系统的传热。  相似文献   

7.
采用数值模拟的方法对冷却壁内等周长的椭圆水管管内换热和阻力特性进行研究,通过对椭圆水管内冷却水的进出口压力、速度和温度变化以及单位时间带走热量的讨论,引入综合换热效率,得出椭圆水管管内阻力系数和综合换热效率随短长轴之比的变化规律。计算结果表明:水管越圆,达到相同进口速度需要的压力差越小,冷却水进口速度相同时出口速度缓慢增大,冷却水管的阻力系数不断减小;同时,相同进口速度条件下冷却水的进出口温差越小,冷却水单位时间带走热量增加但幅度很小,椭圆水管内冷却水综合换热效率逐渐提高。从阻力损失和综合换热效率考虑,冷却壁采用等周长的椭圆水管时,短长轴之比在0.4~0.7较合适,且应适当增大进口速度来提高综合换热效率。  相似文献   

8.
基于商业软件FLUENT,建立高炉冷却壁三维稳态传热模型,通过对铸铁冷却壁温度场的计算,分别研究了水管间距、水管直径、冷却水温度、椭圆形水管椭圆度等因素对高炉冷却壁温度分布的影响。  相似文献   

9.
采用热力耦合方法研究了铜层厚度和冷却水道间距对铜-钢复合冷却壁温度及应力分布的影响.以1∶1比例铜-钢复合冷却壁进行了热态试验,测试了铜-钢复合冷却壁温度分布,计算了热态试验条件下铜-钢复合冷却壁的温度分布,计算结果与试验结果基本吻合.计算结果显示,铜-钢复合冷却壁铜层厚度增加,壁体最高温度和最大等效应力减少,铜层厚度上限值为70mm;冷却水道间距减少可以降低壁体最高温度和最大等效应力,当冷却水道间距小于220mm时,减少冷却水道间距对降低壁体最高温度和最大等效应力作用较小.铜层厚度为60mm,冷却水道间距为220mm的铜-钢复合冷却壁在高炉热负荷较高区域工作不易发生塑性变形损坏.  相似文献   

10.
石琳  程素森 《钢铁》2007,42(11):9-12
根据合金化管铸铁冷却壁热态试验数据确定了合金化管铸铁冷却壁温度场数值模拟的边界条件,利用ANSYS软件、采用热-结构耦合的方法计算了高温状态下合金化管铸铁冷却壁内钢质冷却水管的变形,分析了气隙层和水管热变形对合金化管铸铁冷却壁寿命的影响,得出保证合金化管铸铁冷却壁长寿的最佳气隙层厚度和相应的最佳使用热负荷.  相似文献   

11.
邓凯  程惠尔 《钢铁钒钛》2005,26(2):44-48
有限元法及最优化方法是工程分析最主要的两个数学工具,将两者有机结合起来,可以实现真正意义上的冷却壁性能优化计算机辅助设计。基于正交回归设计确定冷却壁的结构组合,利用大型有限元分析软件ANSYS对不同结构参数下的铸钢冷却壁进行三维稳态温度场及应力场计算,然后通过MATLAB多目标优化设计方法计算得到铸钢冷却壁的最优结构参数。计算结果表明,优化结构参数后的冷却壁比原冷却壁最高温度下降7.88%,最大热应力下降6.14%。  相似文献   

12.
曹同友 《钢铁研究》2009,37(1):20-22
对以全连铸为中心的炼钢厂而言,合理的温度制度是保证生产组织顺行的重要参数之一,通过对炼钢厂各工序温度变化的调查和分析,得到了整个工序过程的温降规律。  相似文献   

13.
高炉铸铜冷却壁的热性能分析   总被引:10,自引:1,他引:10  
石琳  程素森  阮新伟  许良友 《钢铁》2006,41(6):13-16,21
系统分析了高炉用新型埋管式铸铜冷却壁的热态性能及热变形.热态试验结果表明,铸铜冷却壁与轧制铜冷却壁在热态性能上没有大的区别,冷却能力很好,壁体与埋管间没有气隙热阻.以有限元为手段,采用热-结构耦合的方法计算了高温状态下铸铜冷却壁的温度分布、应力和应变,模拟计算结果与热态实测数据基本吻合.计算结果表明,铸铜冷却壁在高炉炉况下的基体温度以及由此产生的热应力都不足以使其很快产生裂纹,能满足长寿高炉的要求.  相似文献   

14.
 冷却壁安全工作是保证高炉长寿的基础。通过设计并建造冷却壁热态实验炉,研究了高炉铸铁冷却壁热面无渣皮和有渣皮时的非稳态传热过程,考察了不同炉气温度条件下冷却壁热电偶温度的变化规律。回归得到了炉气在升温阶段、稳定阶段、降温阶段时冷却壁热电偶温度随时间的变化关系式。计算得出了冷却壁热面在有无渣皮条件下的平均热流强度,回归得出了炉气平均对流换热系数随炉温的变化关系。结果表明,冷却壁热面在有渣皮时热电偶温度的变化速率显著低于无渣皮时的变化速率,冷却壁破损的主要原因是冷却壁温度的反复变化和渣皮的频繁脱落而产生的热应力。  相似文献   

15.
 铜冷却壁在正常状态时由于良好的导热性,在其热面形成稳定的渣铁壳,起到保护冷却壁的作用。近几年,高炉的铜冷却壁水管损坏时有发生,而当冷却壁水管损坏1或2根时,冷却壁能否继续正常工作值得研究。计算了铜冷却壁在水管完好和部分水管损坏时的温度场分布,发现单根水管损坏使热面温度急剧升高近110℃,加剧冷却壁烧损,需及时恢复冷却壁的冷却能力。通过用金属软管修复破损水管,分析了软管直径、水速、水管填料的导热系数等因素对冷却壁温度场的影响。结果表明,软管在允许条件下应选用较大内径,选取较大导热系数的填料。利用软管修复单个水管后,壁体最高温度下降约90℃,对于损坏少数水管的冷却壁能有效修复。  相似文献   

16.
小模块冷却壁是将性能优异的耐火材料直接浇铸在平行排列的冷却水管上而形成的一种新型冷却设备。采用ANSYS软件建立了小模块冷却壁温度场计算模型,利用该模型计算了炉气温度为1200~1600℃、冷却水流速为0.5~2.5m/s条件下壁体材质导热系数、水管材质、水管直径、水管间距、冷却水流速及工作环境温度等条件变化时小模块冷却壁的温度分布状况。结果表明,小模块冷却壁对炉气温度变化的适应能力较强,壁体材质导热系数、水管间距、壁体厚度对小模块冷却壁传热性能影响较大,而水管直径、水管材质及水流速的影响较小。  相似文献   

17.
根据热弹性力学理论,建立了渣皮厚度可变的铜冷却壁热-力耦合应力场分布计算模型,从铜冷却壁本体和炉渣-镶砖界面应力分布的角度分析了煤气温度、冷却制度、镶砖材质和炉渣性质等因素对铜冷却壁寿命及挂渣稳定性的影响规律.计算结果表明:煤气温度的升高使铜冷却壁本体应力线性升高,同时挂渣稳定性减弱;铜冷却壁本体应力值及挂渣稳定性均随渣皮厚度增加而呈现先下降后上升的趋势,实际生产中渣皮厚度应维持在30~60 mm之间;冷却水流速的增大会导致铜冷却壁本体应力值小幅上升,但可使挂渣稳定性增强;冷却水温的提升可小幅降低冷却壁本体应力,但会显著降低挂渣稳定性;镶砖热导率的提升和炉渣热膨胀系数的减小均有利于降低铜冷却壁本体应力并增强挂渣稳定性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号