首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two-step steam reforming of methane(SRM)is a novel chemical looping process towards the production of pure hydrogen and syngas(synthesis gas),consisting ofa syngas production step and a water-splitting step.Renewable energy can be used to drive this process for hydrogen production,especially solar energy.CeO2-Fe2O3 complex oxide oxygen carrier was prepared by the impregnation method and characterized by means of X-ray diffractometer(XRD),Raman spectroscopy(Raman)and hydrogen programmed reduction(H2-TPR).CH4temperature programmed and isothermal reactions were adopted to test syngas production reactivity,and water splitting reaction was employed to investigate water-splitting activity.Moreover,two-step SRM performance was evaluated by a successive redox cycle.The results showed that CO-uncontaminated H2 and highly selective syngas(with H2/CO ratio close to 2)could be respectively obtained from two steps,and CeFeO3 formation was found in the first redox cycle and proved to be enhanced by the redox treatment.After 10 successive cycles,obvious CeFeO3 phase was detected,which may be responsible for favorable successive redox cycle performances.  相似文献   

2.
Eutectic Al-12.6 wt.%Si alloys with various contents of the rare earth dement Er were prepared by the conventional casting technique.The effect of Er on the microstructure and properties of the eutectic Al-Si alloys was investigated using optical microscopy,scanning electron microscopy as well as the friction and wear tests.It was found that the addition of Er obviously improved the anti-wear properties,and reduced the friction coefficient of the alloys.The appropriate addition of Er would change the size and shape of the eutectic silicon,and thereby refine the microstructure of the Al-Si alloys.The refinement mechanism was also discussed.  相似文献   

3.
This review focused on rare earth upconversion nanophosphors (UCNPs), a particular class of emitters whose photoluminescence mechanism is of fundamental difference from that of conventional dyes and semiconductor quantum dots. We in the first section gave a brief summary on a variety of synthetic methodologies developed during the past decades. Instead of presenting an exhaustive reference list, we selected only a few representative examples, illustrating the merits and limits of each involved synthetic route. Then we surveyed the recent progress in the functienalization techniques for these nanomaterials, depicting the modification in microstruetures and improvement in prop-erties with respect to the parent nanopartides. And finally, we emphasized their application in the research fields of biolabeling and energy transfer, narrating their superior performance benefiting from the unique excitation and emission properties.  相似文献   

4.
Four Steels,C-Mn-0.05V,C-Mn-0.11V,C-Mn-0.03Nb and C-Mn were subjected to heat treatment to simulate the microstructure of a coarse grained heat affected zone (CGHAZ) and an intercritically reheated coarse grained heat affected zone (ICCGHAZ).This involved reheating to 1350°C,rapid cooling (Δt 8/5 =24s) to room temperature and then reheating to either 750°C or 800°C.The toughness of the HAZs was assessed using both Charpy and CTOD tests.Microstructural features were characterised by optical,scanning` and transmission electron microscopy.Fractographic examinations of the Charpy and CTOD specimens were carried out to understand the micromechanism of fracture under different microstructural and test conditions.The CGHAZ toughness was similar for the steels except that Steel C-Mn-0.05V had a slightly lower ITT compared to the others.The toughness deteriorated in the ICCGHAZ for all the steels,again Steel C-Mn-0.05V had a superior toughness compared to the other three steels in both ICCGHAZ conditions.Raising the level of vanadium to 0.11% caused a decrease in ICCGHAZ toughness.Steel C-Mn-Nb exhibited a greater degradation of impact toughness after the intercritical cycles.The presence of M-A constituents was the dominant factor in determining the toughness of the ICCGHAZs.The size and area fraction of the M-A constituents were the smallest in Steel C-Mn-0.05V.Increasing vanadium level to 0.11% resulted in a greater area fraction of the M-A constituents,larger average and maximum sizes of M-A particles,and significantly more fields containing the M-A.The addition of 0.031% Nb produced the largest M-A particles and the greatest area fraction for the steels tested.  相似文献   

5.
莱钢2#1 000 m3高炉针对目前原燃料条件,优化筛分工作和炉料结构,通过更换振筛和改良振筛工作方式,将入炉粉末降至3%;通过加强块矿筛分及上下部制度调整相结合,改善了高炉透气性,燃料比降至515 kg/t;通过合理利用小焦块,提高了焦炭利用率,使高炉稳定顺行状况良好.  相似文献   

6.
Rapidly solidified nanocrystalline α-Fe/Nd2Fe14B alloys with enhanced coercivity were obtained by melt spinning.The effects of Ti addition on the microstructore and magnetic properties of the nanocomposite α-Fe/Nd2Fe14B alloys were investigated by X-ray diffraction(XRD)and superconducting quantum interference device(SQUID)magnetometer.The analysis of XRD showed that Vα-Fe estimated to be about 35.3% in the Ti-free α-Fe/Nd2Fe14B nanocomposites decreased down to 26.5% as the addition of was 5 at.% Ti.Accordingly,adding Ti resulted in relevant improvements of magnetic properties,especially of the coercivity Hc from 595 kA/m up to 1006 kA/m.The dependence of Mirrev(H)/2Mr on the reverse field H indicated that nucleation was the dominating mechanism for the magnetization reversal in these nanocomposites.The analysis of the temperature dependence of the demagnetization curve in the α-Fe/Nd2Fe14B nanocomposite magnets indicated that a reduction of αex could play a leading role in an increase in the coercivity of Ti-doped sample.  相似文献   

7.
在镓提取过程中,以离子交换法获得的电解原液碱度高,黏度大,电解时不断产生大量的氢气和氧气,形成大量泡沫,使电解无法正常进行.本研究通过试验选定2种消泡剂消除泡沫的不良影响.结果表明,这2种消泡剂不但不影响电解,反而对电解有利.  相似文献   

8.
The effects of technological parameters on microstructures and properties of low cost hot rolled dual-phase steel was researched by design different finish rolling temperature,mid cooling temperature between laminar cooling and UFC (ultra fast cooling) and stable UFC rate on the same gauge strips with the same chemistry composition during the manufacture process.It is the key for controlling coil temperature to control finish rolling temperature and mid cooling temperature between laminar cooling and UFC that based on stable UFC rate precondition.The lower finish rolling temperature,with mid cooling temperature between laminar cooling and UFC,the better to form martensite is.The foundation of developing the similar productions on the similar product line was supplied.It is good to technological advancement of developing high affixation value production as hot rolled DP steel,TRIP steel etc.in CSP line.  相似文献   

9.
Rare earths-doped oxyfluoride glasses based on germanium oxide and lead fluoride were prepared from commercial raw materials. The glasses with general composition of 50GeO2-(50-x-y)PbO-yPbF2-xLnF3 (Ln=Pr3+-Yb3+), contained different concentrations of optically active dopants (x=0.2 mol.% and 2 mol.%) and PbF2 (y≤15 mol.%). The differential thermal analysis (DTA) was used to determine both thermal characteristic and thermal stability properties of the glasses in the function of the kind of dopant, its concentration, and a glass composition. Characteristic glass temperatures such as glass transition temperature (Tg), glass crystallization temperature (Tc) and temperature corresponding to the maximum of the crystallization rate (Tpc) were evaluated. On the basis of obtained results, the thermal stabilities of glasses under study were evaluated using various thermal stability criteria (Dietzel factor ?T, Saad-Poulain factors H' and S). It was found that the increase in rare earth fluoride contents influenced thermal characteristics when the characteristic temperatures of the individual glass was shifted towards higher values. The effect of the PbF2 content and the kind of rare earth impurity on the glass stability was observed. Absorption spectra of lanthanide-doped glasses were measured at room temperature and used to determine the phenomenological intensity parameters Ωt and next, to estimate radiative properties of lanthanide ions in this matrix. Radiative transition probabilities of luminescent states of Ln3+, branching ratios and radiative lifetimes were determined. The variation of the Ωt along the lanthanide series was presented and discussed.  相似文献   

10.
尾矿在建材工业中的应用   总被引:2,自引:0,他引:2  
分析了尾矿资源的特点,以大量事例、数据概述了尾矿资源在建材工业中应用的途径及现状.尾矿用于建材生产不仅可以实现矿山的可持续发展,而且减少了大量固体废弃物排放所带来的环境污染问题,变废为宝,实现了经济效益和社会效益双丰收.  相似文献   

11.
以常规湿法炼锌工艺锌浸渣为研究对象,对比研究常压酸浸和加压酸浸条件下锌浸渣的酸性浸出减量化效果,以及渣中锌、铜和铟等有价金属的浸出率。结果表明,在常压酸浸条件下,渣量可减少65%以上,渣中锌含量可降至3%左右,锌、铜和铟的浸出率均在91%以上;在加压酸浸条件下,渣量可减少40%以上,渣中锌含量可将至2%以下,锌和铜的浸出率达到95%左右,但铟浸出率仅为70%左右,相对较低。常压酸浸过程锌浸渣中的铁绝大部分浸出,有利于铟的浸出;加压酸浸过程锌浸渣中的铁大量以铅铁矾的形式留在渣中,阻碍了铟的浸出。常压浸出液中铁含量较高,达到25 g/L以上;加压浸出液中铁含量较低,小于2 g/L,有利于后续浸出液中铜、铟的回收。常压浸出渣量少,有利于渣中铅、银的富集,可单独销售;加压浸出由于铁沉淀入渣,致使渣中铅、银富集比低,适合于铅锌联合企业返回铅熔炼炉。  相似文献   

12.
中浸渣的机械活化浸出工艺研究   总被引:2,自引:1,他引:2  
张凡  马启坤  刘韬 《云南冶金》2002,31(4):33-37
硫化锌精矿焙烧矿的中性浸出渣常含有锗等有价元素,常规低酸高酸两段浸出流程锗的直收率低。试验探寻了机械活化浸出工高锗浸出率的可能性,表明在试验确定的机械活化浸出条件下,两段浸出过程锗和锌的浸出率可分别提高19.98%和32.765,机械活化浸出是一有良好应用前景的工艺技术方向。  相似文献   

13.
介绍了一种硫化锌精矿焙烧浸出与直接浸出结合提锌同时除铁的方法,利用硫化锌精矿氧压浸出除铁原理,浸锌同时除铁,取消了热酸浸出的除铁过程,简化了设备及工艺流程,提高了锌回收率,可以达到节能、环保、高效。  相似文献   

14.
采用氧压酸浸工艺选择性提取铌钛铀复杂多金属矿石中的铀,并对浸出过程铀、铌、钛、铁等元素的溶出行为进行了研究。结果表明,在硫酸用量240g/kg、矿浆液固体积质量比1.5mL/g、浸出反应温度180℃、氧气分压0.5MPa、反应时间6h条件下,铀浸出率可达到97.2%,而铌、钛、铁等则留于浸出残渣中。实现了从复杂难破解多金属矿石中高效选择性提铀的目的。  相似文献   

15.
氰化浸金过程中过氧化物的助浸作用   总被引:3,自引:0,他引:3  
介绍了过氧化物在氰化浸金工艺中的应用、作用机理及主要影响因素。过氧化物在适宜条件下可以提高氰化浸金的速率,降低氰化物的耗量。  相似文献   

16.
研究了不同反应温度、固液比、氧分压、搅拌转速、浸出液浓度和反应时间对硫化镍钴渣中钴和镍的浸出规律及动力学的影响。结果表明:钴和镍浸出的较优条件为:反应温度120 ℃、固液比1︰30 g/mL、氧气分压0.7 MPa、搅拌转速230 r/min、硫酸浓度1 mol/L、反应时间130 min,镍和钴的平均浸出率分别为94.02%、94.64%。硫化钴镍渣中镍和钴的浸出符合收缩核模型,内扩散为反应的限制性环节,表观活化能分别为3.65、6.02 kJ/mol。可以通过减低渣粒度和固液比、维持较高的浸出液浓度、转速和氧分压来提高硫化镍钴渣的浸出速率。  相似文献   

17.
开展了两种加压浸出工艺处理锌浸出渣的试验研究。“加压还原浸出+氧压浸出”取代原针铁矿工艺的“三段逆流热酸浸出+还原”,锌焙烧矿到铅渣的渣率为15.74%,锌、铁、铜、铟、镁的浸出率分别为99.32%、93.50%、95.02%、91.03%、99.97%,各项指标均优于原工艺,锌、铟的浸出率分别提高了1.82、11.03个百分点,反应时间由14 h缩短为4 h,液固分离次数由4次减少为2次。“两段逆流加压浸出”取代原黄钾铁矾工艺的“硅浸+预中和+黄钾铁矾沉铁”,锌焙烧矿到二段渣的渣率为35.88%,锌、铁、铜、铟、镁的浸出率分别为98.50%、4.94%、90.48%、2.69%、93.77%,各项指标均优于原工艺,浸出后液(相当于水解除铁后液)可以直接返回中性浸出工序,反应时间由16 h缩短为4 h,液固分离次数由3次减少为2次。加压浸出采用密闭的加压釜,更容易实现整个炼锌系统蒸汽平衡,无需额外增加蒸汽锅炉。  相似文献   

18.
高冰镍浸出系统产出的高冰镍浸出渣中铜含量较高,研究了采用微波辅助加热、Fe_2(SO_4)_3氧化浸出工艺从渣中浸出铜,考察了微波功率、硫酸质量浓度、Fe_2(SO_4)_3用量、浸出时间、液固体积质量比对铜浸出率的影响。利用JMP软件分析试验结果,确定了Fe_2(SO_4)_3用量、硫酸质量浓度是影响铜浸出的显著因素,适宜的浸出条件为微波功率700 W,Fe_2(SO_4)_3质量浓度100g/L,硫酸质量浓度184g/L,液固体积质量比8∶1,浸出时间120min。在适宜条件下,铜浸出率为89.82%。  相似文献   

19.
开展湿法炼锌浸出渣和锌精矿联合酸浸试验,利用硫酸浸出湿法炼锌常规浸出渣中以铁酸锌等方式存在的锌,同时采用高铁锌精矿将浸出液中的三价铁离子还原为二价铁离子,实现锌精矿中锌的同步浸出。探讨锌浸出渣和锌精矿投料比、初始硫酸浓度、反应时间、液固体积质量比和浸出温度对锌及伴生金属铜、铟和杂质金属铁浸出率的影响。结果表明,在浸出终点浸出液中硫酸浓度20~40g/L、锌浸出渣与锌精矿质量比1∶0.25、原料粒度-0.074mm、液固体积质量比6mL/g、反应温度90℃、反应时间3h的条件下,锌、铟、铜的浸出率都在96%以上,浸出液中95%以上的铁被还原为二价铁离子,满足后续工艺的要求。  相似文献   

20.
细菌浸矿及其对锰矿浸出的研究进展   总被引:1,自引:0,他引:1  
根据文献资料归纳总结了细菌浸出的原理、浸矿菌、培养、驯化等一些关键问题,并重点对细菌浸出锰的研究进展做了阐述,最后指出了细菌浸出锰矿是一个重要的发展方向,应该大力对其进行研究,以达到工业应用的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号