首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过建立高炉送风系统模型,模拟了风口尺寸对风口速度、流量和鼓风动能的影响,纠正了高炉操作认识上的一些错误。研究表明,缩小少数几个风口面积会减小鼓风动能,但却增大了其它风口的鼓风动能;只有减小多个风口的面积,才会增大所有风口的鼓风动能。减小少数几个风口的操作之所以能抑止边缘气流是其风量明显减少所致。  相似文献   

2.
通过建立高炉送风系统模型,模拟了风口尺寸对风口速度、流量和鼓风动能的影响,纠正了高炉操作认识上的一些错误。研究表明,缩小少数几个风口面积会减小鼓风动能,但却增大了其它风口的鼓风动能;只有减小多个风口的面积,才会增大所有风口的鼓风动能。减小少数几个风口的操作之所以能抑止边缘气流是其风量明显减少所致。  相似文献   

3.
《炼铁》2014,(3)
对武钢5号高炉减少风口损坏的实践进行了总结。通过采取合理煤气流分布、增加鼓风动能、煤枪技术改进、加强喷煤管理等一系列措施,取得明显效果,风口损坏数目明显减少。  相似文献   

4.
采用数值模拟的方法对典型的大中小3种不同容积的高炉的风口均匀性进行了研究,并分析了风口调节措施对鼓风参数的影响。结果表明:风口鼓风参数分布规律与热风围管中各支管位置处的压力分布规律一致,高炉风口尺寸相同时,各风口鼓风参数也不同;高炉圆周方向各风口的鼓风参数存在最大及最小值,对于不同容积的高炉,达到最值的风口位置也随之变化;总风量增加时,风口不均匀性增加,大高炉鼓风动能不均匀性最大。总风量不变时,减小某风口的面积,该风口的风量、鼓风动能并未增加;风口长度的增加对高炉鼓风参数的调节影响不大。  相似文献   

5.
高乾恒 《炼铁》1989,8(6):41-41
本文介绍铜陵钢铁厂120m~3高炉风口烧损情况,认为鼓风动能过大是风口烧损的主要原因。采用斜风口并适当扩大风口直径,高炉鼓风动能维持在3000kg·m/s 左右的水平,能减少风口的烧损。  相似文献   

6.
李洋龙  程树森  陈川 《钢铁》2015,50(6):26-34
 合理调整风口对大型高炉吹透中心、活跃炉缸十分重要。目前,实际操作常常认为增加风口长度、增加风口回旋区深度、缩小风口面积能提高风速,进而提高鼓风动能,以利于吹透中心。建立了调整风口参数的数学模型,并以某厂3 200 m3高炉为例,给出了在总风量不变的条件下,增加1个风口长度、减小1个风口面积以及多个风口尺寸调整时,各风口风量、风速和鼓风动能的变化。发现增加部分风口的长度时,对应风口风量、风速、鼓风动能降低。缩小少数风口的面积,会降低对应风口的风量;只有在缩小多数风口的面积时,已调整的风口风速和鼓风动能才可能提高,而未调整的风口风量、风速和鼓风动能提高幅度更大。根据该数学模型,定量化给出该高炉调整风口的相关参数,可用于调整炉缸煤气流的均匀性,维持高炉稳定、顺行。  相似文献   

7.
 通过分析高炉鼓风动能与炉缸活性的关系,认为合理的鼓风动能不仅是保持炉缸活性良好的前提条件,更是高炉操作者调节炉况的重要手段之一。通过研究合理鼓风动能的理论依据和计算方法,发现高炉合理鼓风动能不仅需要随着高炉容积的增大而增大,而且需要有合理的风量和风口面积。通过比较不同容积高炉所对应的风量,提出了风量比和风量系数的概念;介绍了本钢新1号高炉通过调节风口面积探索合理鼓风动能的过程。对高炉在不同鼓风动能条件下所产生的各种直观现象和仪表变化进行了说明,针对这些现象就可以判断出鼓风动能是否在合理范围内,并进行相应的调节。因此,合理的鼓风动能需要适应高炉生产的各方面条件的变化,这就需要对合理鼓风动能进行不断的探索和实践,以形成应变的合理的送风制度,确保高炉生产长期稳定顺行。  相似文献   

8.
《炼铁》2017,(2)
简要分析了高炉鼓风动能的影响因素及判定方法,基于鞍钢2号3200m~3高炉生产数据的统计分析,重点探讨了2号高炉合理鼓风动能的范围和鼓风动能的控制方法。分析结果表明:高炉要取得低燃料比和高产量的效果决定于合理的鼓风动能,可以通过控制合理的人炉风量和送风比、控制合理的风口面积、调整富氧率,以及提高原燃料条件来获得合理的鼓风动能。针对鞍钢2号3200m~3高炉而言,合理的鼓风动能范围为110~130kJ/s,合理的送风比范围为1.75~1.80,合理的风口回旋区长度应在1.82m左右。  相似文献   

9.
简要分析了高炉鼓风动能的影响因素及判定方法,基于鞍钢2号3200m^3高炉生产数据的统计分析,重点探讨了2号高炉合理鼓风动能的范围和鼓风动能的控制方法。分析结果表明:高炉要取得低燃料比和高产量的效果决定于合理的鼓风动能,可以通过控制合理的人炉风量和送风比、控制合理的风口面积、调整富氧率,以及提高原燃料条件来获得合理的鼓风动能。针对鞍钢2号3200m^3高炉而言,合理的鼓风动能范围为110~130kJ/s,合理的送风比范围为1.75~1.80,合理的风口回旋区长度应在1.82m左右。  相似文献   

10.
通过建立高炉送风系统模型,模拟了风口尺寸和风口压力变化对风口速度、流量和鼓风动能的影响,并结合理论分析对风口尺寸调节方法进行了探讨.研究结果表明:在高炉操作过程中,只有当多个风口的面积减小时,所有风口的鼓风动能才都会增大;在实际操作中,因为这些风口的风量明显减少,所以减小少数几个风口的操作能抑止边缘气流的发生.  相似文献   

11.
以流体动力学为基础,建立了阻力损失计算模型,对送风系统的阻力损失进行了理论解析,并讨论了送风系统阻力损失对风口处风速和鼓风动能的影响。对国内5 000 m3级超大型高炉解析结果表明:送风系统阻力损失约占热风表压的11%左右;在风量相同的条件下,考虑送风系统阻力损失的风速和鼓风动能值较不计送风系统阻力损失时要高;为减少风口损坏,建议该5 000 m3级超大型高炉风速上限控制在280 m/s左右,鼓风动能上限控制在18 kW左右。  相似文献   

12.
为分析高炉炉缸异常侵蚀条件下调整风口直径后的鼓风参数分布,利用数值模拟方法研究了热风管道及各风口的压力、速度、体积流率及鼓风动能分布。计算结果表明,相同风口直径分布条件下,鼓风参数并不完全相同,随着热风向三岔口对向流动,体积流率和鼓风动能整体逐渐增大;对炉缸异常侵蚀的风口,缩小风口直径,风速增加,体积流率降低,鼓风动能降低,符合保护炉缸、抑制侵蚀的目的。  相似文献   

13.
本文从理论和富氧喷煤实践,阐述了鼓风动能为高炉下部调节的关键,包括工作风口数与动能的关系,工作风口数与风口直径的关系,认为增加风口数是正确的。  相似文献   

14.
唐钢100m~3高炉在扩容及增加风口数目后出现炉况不顺,通过不断调整风口进风面积,逐步摸索高炉合适鼓风动能,取得了改善炉况和强化冶炼的效果.  相似文献   

15.
文中对宣钢1~#高炉炉役后期减少冷却壁破损生产实践进行了总结。通过改善原燃料质量、下部采用长风口,提高鼓风动能、上部优化装料制度,稳定煤气流分布、提高炉顶压力、炉体灌浆等措施,遏制了高炉炉役后期冷却壁损坏增加的趋势,实现了高炉长期稳定顺行及经济指标改善。  相似文献   

16.
为了改善高炉送风系统的供风均匀性,以某厂3 200 m3高炉送风系统为研究对象,采用数值模拟方法分析了总鼓风量、风口直径对系统供风均匀性的影响,并给出了具体改善方案。结果表明,在初始风口尺寸条件下,28#和12#风口的鼓风动能明显小于其它风口,鼓风动能最大差值为11.91 kJ/s,整体均匀性指数为2.31,系统的供风均匀性不佳。将28和12#风口调整成130 mm后,整体均匀性指数降为0.87。在此基础上,增大所有风口直径和降低总鼓风量,均能小幅度改善系统供风均匀性,但平均鼓风动能下降较大。将送风系统的28#风口直径调整为127 mm、12#风口直径调整为130 mm、26#和30#风口直径调整为132 mm后,系统供风均匀性得到明显改善,鼓风动能最大差值降为2.27 kJ/s,整体均匀性指数降为0.45。  相似文献   

17.
张月 《山西冶金》2023,(11):188-189+216
主要探讨了合理的鼓风动能在2 500 m3钒钛矿高炉炉况恢复过程中所起到的重要作用。通过堵风口提高鼓风动能吹透中心的手段,实现了炉况的恢复,解决了高炉长期中心不活,上部占比高,易发生悬料、管道等特殊炉况的问题。  相似文献   

18.
对包钢8号高炉送风制度参数的合理选择进行了计算和分析。结果表明:①8号高炉合理送风制度参数为回旋区深度1.845m,鼓风动能131.34kJ/s,风速253m/s,风口面积0.547 m^(2),理论燃烧温度2251.28℃;②现有回旋区长度和鼓风动能经验公式误差很大,对适合8号高炉回旋区长度和鼓风动能的计算公式进行了修正;③高炉实际操作过程中,理论燃烧温度决定不了实际的炉热状态和趋势,必须以实际的燃料比和渣铁温度水平为依据进行操作;④扩大风口面积与增加炉顶无矿区面积相配合,可以为增加风量和提高产量创造条件。  相似文献   

19.
针对风温低降带来的高炉鼓风动能下降、风口前火焰温度下降、软熔带位置变化等不利影响,通过优化鼓风动能参数、上部装料制度和火焰温度参数,找到高炉在低风温条件下的操作参数群,使高炉经济技术指标得到改善,为同行业高炉低风温条件下保证炉况顺行和指标改善,有良好的借鉴和推广意义。  相似文献   

20.
分析了梅钢4号高炉高利用系数低燃料消耗生产操作.通过操作实践认为,稳定上部布料档位及圈数、降低高炉设备故障休风率、减少风口小套损坏数量、休风后快速恢复、实现连续出铁、提高出渣系数、保证足够的鼓风动能、精确控制燃料比及低硅冶炼等方法,能够实现高炉生产的高利用系数低燃料消耗.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号