首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过对冷加工板材的变形程度,退火温度等变形和热处理参数的研究,探讨Ti-4Al-22V钛合金板材的加工变形特点和组织性能的变化规律.结果表明,该合金具有较强的冷变形能力,较宽的温度区域,可通过细化晶粒来提高板材的强度和塑性.  相似文献   

2.
Ti-6Al-4V合金具有优异的力学性能、抗腐蚀性能及生物相容性,可被用于众多领域。该合金是典型的两相钛合金,其相尺寸、体积分数和分布情况均会对其失效行为产生影响,S.Katani等人采用有限元方法模拟了微观组织形态对Ti-6Al-4V合金(含55%的α相和45%的β相)力学性能和失效机制的影响。实验选用厚度为0.7 mm、经退火处理的Ti-6Al-4V合金轧制板材,其化学成分(质量分数)为0.016 C、  相似文献   

3.
日本钢管公司(NKK)研制成功高可成形性钛合金SP-700,已获日本专利,并在英、美、法、德国获得专利使用权。SP-700钛合金成分为Ti-(4~5)Al-(2.5~3.5)V-(1.8~2.2)Mo-(1.7~2.3)Fe。合金密度4.54g/cm~3,略高于Ti—6Al-4V。β转变温度900℃。该合金属具有超细组织(α_初≈3μm)的富β的α+β型钛合金。突出的优点是强度高、可成形性好,有希望代替Ti-6Al-4V,它克服了Ti-6Al-4V加工性能差的缺点。具有明显的热处理效应,下  相似文献   

4.
本研究在成熟应用的Ti-6Al-4V合金基础上发展了一种基于Ti-Al-V-Fe-Si系的两相钛合金-TC4F合金,并通过对该新合金的材料制备与初步研究表明,通过添加少量的合金元素Fe和Si,新合金的综合力学性能得到提高,合金的强度、塑性和断裂韧性得到良好匹配,从而满足了设计要求。新合金的最佳热处理工艺为获得魏氏组织的β退火。  相似文献   

5.
钛合金发动机阀门上有一层由硬质陶瓷或金属化合物弥散于钛中而涂于阀门表面上的硬质涂层。本工艺的特殊之处在于其硬质陶瓷是碳化物、氧化物或氮化物,例如碳化钛、碳化硅、碳化铬或碳化钨。用于阀门的钛合金有Ti-6Al-4V、Ti-6Al-6V-2 Sn、Ti-6Al-2Sn-4Zr-2Mo、Ti-6Al-2Sn-4Zr--6Mo、Ti-10V-2Fe-3Al、Ti-5Al-2.5Sn、Ti-8Al-1Mo-1V、Ti-13V-11Cr-3Al、Ti-8Mo-8V-2Fe-  相似文献   

6.
Ti-6Al-4V合金是用途最广泛的钛合金,在航空、汽车、能源、舰船、化工、医疗器械及体育用品等所有应用领域中,该合金占到50%以上。在航空业中,Ti-6Al-4V合金用作重要的零部件,从隔板、机翼、机架到压气机盘、发动机、叶片、气瓶。例如,Ti-6Al-4V在美国F22“猛禽”战斗机总重中占36%。因此,对Ti-6Al-4V零部件进行设计并改进热加工工艺有助于大大降低成本。1 Ti-6Al-4V合金的级别Ti-6Al-4V合金根据间隙元素含量被划分成两种级别,它们之间的主要差异是氧含量不同。工业级Ti-6Al-4V中氧的质量分数为0.16%~0.20%;超低间隙(ELI)…  相似文献   

7.
利用大型的有限元软件MSC.MARC对钛合金粉末在热等静压(HIP)条件下的变形和致密化规律进行研究,并以典型的TC4(Ti-6Al-4V)粉末为原材料,以数值模拟为工艺指导,进行TC4粉末材料热等静压成形试验,全面分析了热等静压成形的钛合金材料的微观组织和力学性能。结果表明:粉末冶金Ti-6Al-4V微观组织均匀细密,主要有片状α相和相间β相组成,在颗粒与颗粒的交界处,有等轴α相组织的存在,这种特殊的微观组织导致粉末冶金Ti-6Al-4V材料具有不低于锻件的力学性能。  相似文献   

8.
TIMETAL622钛合金(Ti-6Al-2Sn-ZZr-2Mo-2Cr-0.23Si)可用来制造飞机骨架和发动机结构中的耐损件,它的断裂力学性能相当于β退火态的Ti-6Al-4V合金,但强度更高,在冶金上是一种间隙固溶元素含量极低(ELI)的α+β合金.  相似文献   

9.
对Ti-6Al-4V钛合金的原始组织进行了分析,得出了原始组织与铸造过程中冷却速度的关系;重点研究了变形速率、变形温度和变形程度对Ti-6Al-4V钛合金内部组织的影响。  相似文献   

10.
Ti-6Al-4V合金是用途最广泛的钛合金,在航空、汽车、能源、舰船、化工、医疗器械及体育用品等所有应用领域中,该合金占到50%以上。在航空业中,Ti-6Al-4V合金用作重要的零部件,从隔板、机翼、机架到压气机盘、发动机、叶片、气瓶。例如,Ti-6Al-4V在美国F22“猛禽”战斗机总重中占36%。因此,对Ti-6Al-4V零部件进行设计并改进热加工工艺有助于大大降低成本。1 Ti-6Al-4V合金的级别Ti-6Al-4V合金根据间隙元素含量被划分成两种级别,它们之间的主要差异是氧含量不同。工业级Ti-6Al-4V中氧的质量分数为0.16%~0.20%;超低间隙(ELI)…  相似文献   

11.
由于比强度高、耐蚀性好和与超塑性有关的易成形性,α/β钛合金Ti-6Al-4V在宇航工业中广泛用作结构材料。尽管以前对超细晶Ti-6Al-4V的加工进行了许多努力,但还没有对通过等通道转角挤压工艺(ECAP)获得晶粒细化及其超塑性进行过系统的研究。韩国浦项科技大学的科研人员研究发现超细晶Ti-6Al-4V的低温超塑性随温度和应变速率而变化。通过873K等温ECAP时施加-4的有效应变,使初始材料等轴仪晶粒尺寸从11μm减小到0.3μm(体积百分数不变)。因而在退火温度达873K时产生了相对稳定的超细晶显微组织。  相似文献   

12.
Ti-6Al-4V合金作为一种重要的钛合金,其使用量占到了钛合金总使用量的75%~85%,但其耐磨性差、阻燃性差、疏水疏冰性能差、生物相容性不理想等性能缺陷在一定程度上限制了其在某些领域中的应用。首先对Ti-6Al-4V合金在各个领域应用时,其性能缺陷的表现形式及危害进行了概述,然后介绍了目前改善Ti-6Al-4V合金性能缺陷所普遍采用的以及具有创新性的表面改性技术,评述了部分表面改性技术的优缺点,最后提出了需对Ti-6Al-4V合金表面改性技术进一步研究的方向。  相似文献   

13.
针对截面厚度达200 mm的损伤容限型Ti-6Al-4V ELI合金锻件,开展了β热处理工艺和准β热处理工艺试验,对比分析了热处理工艺对锻件强度、塑性、断裂韧度、疲劳裂纹扩展速率的影响。研究结果表明,随着第一重退火温度从Tβ+15℃升高到Tβ+30℃、Tβ+60℃,锻件塑性下降明显。经准β工艺热处理后,锻件的β晶粒尺寸较小,塑性明显优于β热处理工艺。强度、断裂韧度和疲劳裂纹扩展速率对β热处理温度不敏感。为达到良好的强度-塑性-韧性的综合性能匹配,Ti-6Al-4V ELI合金厚截面锻件宜采用较低热处理温度(如Tβ+15℃)的β热处理工艺或准β热处理工艺。  相似文献   

14.
本文研究了用于超速离心机水平转头的Ti-6Al-4V锻件的组织控制。通过对坯料的β淬火处理、α+β区锻造及双重热处理,实现了对Ti-6Al-4V锻件的组织控制,使粗大魏氏组织转变为细晶双态组织,并获得比较满意的机械性能。  相似文献   

15.
《特钢技术》2006,11(2):41-41
电子束焊接(EBW)和气体钨电弧焊接(GTAW)是两种重要的熔化连接工艺,在航空航天工业中用于制造Ti-6Al-4V合金的关键性组合部件。有关Ti-6Al-4V焊接的大部分文献数据适用于工业级材料和气体钨电弧焊接。而具有低氧含量(最大不超过0.13%)超低间隙(ELI)级材料,通常表现出极好的韧性特性,故更适宜于航空航天的应用,但关于材料的GTA和EB焊接的文献报道较少,特别是ELI级和工业级Ti-6Al-4V的GTA和EB焊接的比较研究,尚未见报道。本文作者对ELI级和工业级Ti-6Al-4V材料,进行了EB和GTA焊接以及焊后热处理(PWHT)状态进行了冲击韧性研究。  相似文献   

16.
对2块航空航天工业常用的钛合金板Ti-6Al-4V的表面进行打磨、清洗及阳极化处理,然后在室温条件下用环氧320/322胶进行胶接,放入烘干箱中,在120℃温度下保温固化1 h。采用Bruker D8 Discover型X射线衍射仪对Ti-6Al-4V合金板及其胶接后的织构进行分析,研究胶接对Ti-6Al-4V合金织构的影响。结果表明:Ti-6Al-4V合金胶接固化后,欧拉角位于0°~42°区间内,{0001}?0211?织构变强,胶接对{0110}?0211?织构影响不大。胶结后的钛合金在β取向线上的织构占比约为19.4%,?取向线上的织构占比约为81.6%。  相似文献   

17.
热处理对Ti-6Al-4V棒材固溶时效性能的影响   总被引:3,自引:0,他引:3  
概述了对飞机转动件叶片用Ti-6Al-4V(TC4)钛合金棒材通过采用不同固溶时效热处理制度的实验,以研究TC4用钛合金棒材不同热处理制度与组织、固溶时效性能之间的关系,通过对比试验得出工业化生产满足宇航结构件和转动部件用TC4棒材制定合理的固溶时效热处理制度。  相似文献   

18.
正Ti-6Al-4V钛合金的超塑性行为已被广泛研究,但其在应用上受到了一些限制,如热加工和冷加工困难、加工硬化率低及超塑性形成温度过高。SP700(Ti-4.5Al-3V-2Mo-2Fe)是一种富β的α+β钛合金,性能优于Ti-6Al-4V钛合金,例如,有更高的拉伸和疲劳强度、更好的断裂韧性和更低的超塑性成形温  相似文献   

19.
<正>Ti-6Al-7Nb合金与Ti-6Al-4V合金相似,但是具有更强的惰性,是专为医疗应用而设计的。然而,与Ti-6Al-4V合金不同的是,该合金为近α型合金,β相含量小于5%,所以不能通过常规热处理进行强化。众所周知,利用大塑性变形(SPD)技术能够获得超细晶(UFG)纳米结构材料,其晶粒尺寸小于1μm,并且具有优良的力学性能。UFG纳米结构的形成可以使Ti-6Al-7Nb合金的强度得到提高,在许  相似文献   

20.
Ti-6Al-4V合金是用途最广泛的钛合金,在航空、汽车、能源、舰船、化工、医疗器械及体育用品等所有应用领域中,该合金占到50%以上。在航空业中,Ti-6Al-4V合金用作重要的零部件,从隔板、机翼、机架到压气机盘、发动机、叶片、气瓶。例如,Ti-6Al-4V在美国F22"猛禽"战斗机总重中占36%。因此,对Ti-6Al-4V零部件进行设计并改进热加工工艺有助于大大降低成本。 1 Ti-6Al-4V合金的级别   Ti-6Al-4V合金根据间隙元素含量被划分成两种级别,它们之间的主要差异是氧含量不同。工业级Ti-6Al-4V中氧的质量分数为0.16%~0.20%;超低间隙(ELI)级Ti-6Al-4V中氧的质量分数为0.1%~0.13%。ELI级中的铝含量比工业级中的稍低。工业级的比ELI级的强度高,延展性稍低,而ELI级的断裂韧性要高出工业级的约25%。因此,ELI级Ti-6Al-4V更适合用于战斗机中对损伤容限有严格要求的部件。而在材料以抗拉强度为设计依据的其它应用中,则通常选用工业级 Ti-6Al-4V。 Ti-6Al-4V是近α合金,具有α+β双相结构。工业级与ELI级Ti-6Al-4V的β转变温度分别为:1010℃~1020℃和970℃~ 980℃。   采用形变热处理,可使合金的显微组织发生变化,从针状组织或片状组织(β转变组织)变成等轴(α+β)组织。等轴组织与针状或片状组织的拉伸强度差异不很明显,而等轴组织的延伸率及疲劳寿命是后者的两倍。因此,等轴组织更适合用于对低周疲劳寿命有严格要求的转动部件,例如压气机盘。然而,β转变组织较(α+β)组织有更好的断裂韧性及高温蠕变强度。 2 热机械加工工艺   Ti-6Al-4V合金热机械加工工艺步骤如图1所示。 铸锭的初加工主要是在β转变温度以上的机械加工,包括镦锻、侧压、开坯,这些全部是慢速加工,但它有助于使化学成分分布均匀,并且可以破碎铸态组织(β转变组织)。   在β加工后采用空冷等快速冷却方法,在原始β相晶界上析出薄α层的针状组织或魏氏组织(层状组织)。原始β晶粒尺寸最好不超过100μm~200μm,α层厚度小于5μm。为了减小原始β晶粒尺寸,通常的做法是,在β加工时,在(α+β)相区,插入几个开坯步骤,以及降低最终β加工的温度。然而,近期许多研究指出,减少原始β晶粒尺寸并没有给热加工带来更多的益处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号