首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The effect of alloy composition on hydrogen activity was measured for seven titanium alloys as a means to determine the tendency for hydrogen migration within dissimilar metal welds. The alloys were: Ti-CP, Ti-3A1-2.5V, Ti-3Al-2.5V-3Zr, Ti-3Al-2Nb-lTa, Ti-6A1, Ti-6A1-4V, and Ti-6Al-2Nb-lTa-0.8Mo. Hydrogen pressure-hydrogen concentration relationships were determined for temperatures from 600 ‡C to 800 ‡C and hydrogen concentrations up to approximately 3.5 at. pct (750 wppm). Fusion welds were made between Ti-CP and Ti-CP and between Ti-CP and Ti-6A1-4V to observe directly the hydrogen redistribution in similar and dissimilar metal couples. Hydrogen activity was found to be significantly affected by alloying elements, particularly Al in solid solution. At a constant Al content and temperature, an increase in the volume fraction ofΒ reduced the activity of hydrogen in α-@#@ Β alloys. Activity was also found to be strongly affected by temperature. The effect of temperature differences on hydrogen activity was much greater than the effects resulting from alloy composition differences at a given temperature. Thus, hydrogen redistribution should be expected within similar metal couples subjected to extreme temperature gradients, such as those peculiar to fusion welding. Significant hydrogen redistribution in dissimilar alloy weldments also can be expected for many of the compositions in this study. Hydride formation stemming from these driving forces was observed in the dissimilar couple fusion welds. In addition, a basis for estimating hydrogen migration in titanium welds, based on hydrogen activity data, is described.  相似文献   

2.
The effect of deformation-induced transformation of metastableβ phase on the ductility and toughness of four commercial titanium alloys was investigated. Tensile tests, Charpy impact tests, and both static and dynamic fracture toughness tests were carried out at temperatures between 77 and 473 K on four titanium alloys containing metastableβ phase. Deformation-inducedα″ (orthorhombic martensite) was observed in an (α + β)-type Ti-6Al-2Sn-4Zr-6Mo alloy. The dynamic fracture toughness of this alloy increased considerably at 223 K compared to those at other temperatures. In another (α + β)-type Ti-6A1-4V alloy, the static fracture toughness at 123 K and the dynamic fracture toughness at 223 K were increased considerably by the presence of deformation-induced martensite compared to those at other temperatures. The strength increased as the temperature decreased in this alloy. An abnormal elongation of aβ-type alloy, Ti-15V-3Al-3Sn-3Cr, at 123 K was attributed to the mechanical twinning of theβ phase. However, the effect of deformation-induced transformation on the fracture toughness of Ti-3Al-8V-6Cr-4Mo-4Zr alloy was not observed. Formerly Visiting Associate Professor, Department of Metallurgical Engineering and Materials Science, Carnegie Mellon University, Pittsburgh, PA. Formerly with the Department of Production Systems Engineering, Toyohashi University of Technology.  相似文献   

3.
The oxygen-enriched alpha case on titanium and alloys was successfully deoxygenated to satisfactory levels by electrolysis in molten CaCl2, in which the cathode was made from the metal to be refined. The oxygen distribution in the metal before and after electrolysis was characterized by microhardness tests, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX). The electrolysis has been carried out at voltages sufficiently below that for the decomposition of CaCl2, and the results obtained suggest that the alpha case deoxygenation follows a simple oxygen ionization mechanism in which the oxygen in the metal is simply ionized at the cathode/electrolyte interface, dissolves in the molten salt, and then discharges at the anode. It is shown that by applying the electrochemical method, the alpha cases on both commercially pure titanium (CP Ti) and the Ti-6Al-4V alloy can be effectively deoxygenated. In particular, due to the removal of oxygen, the original alpha case (single phase) on the Ti-6Al-4V alloy has been converted back to the two-phase microstructure.  相似文献   

4.
The flow behavior of the α and β phases in Ti-6Al-4V was interpreted in the context of a self-consistent modeling formalism. For this purpose, high-temperature compression tests were conducted at various temperatures for a single-phase α alloy (Ti-7Al-1.5V), a variety of near-β alloys, and the two-phase alloy Ti-6Al-4V, each with an equiaxed microstructure. The flow behavior of the α phase in Ti-6Al-4V was deduced from the experimental results of the single-phase α alloy. The flow behavior of the β phase, which was predicted by using the self-consistent approach and the measured flow behaviors of Ti-6Al-4V and Ti-7Al-1.5V, showed good agreement with direct measurements of the various near-β alloys. From these results, it was shown that the strength of the α phase is approximately three times higher than that of the β phase at temperatures between 1088 K and 1223 K (815 °C and 950 °C). It was also concluded that the relative strain rates in the two phases varies significantly with temperature. The usefulness of the approach was confirmed by comparing the predicted and measured flow stresses for other Ti-6Al-4V and near-α alloys.  相似文献   

5.
The effect of alloy composition on hydrogen activity was measured for seven titanium alloys as a means to determine the tendency for hydrogen migration within dissimilar metal welds. The alloys were: Ti-CP, Ti-3A1-2.5V, Ti-3Al-2.5V-3Zr, Ti-3Al-2Nb-lTa, Ti-6A1, Ti-6A1-4V, and Ti-6Al-2Nb-lTa-0.8Mo. Hydrogen pressure—hydrogen concentration relationships were determined for temperatures from 600 °C to 800 °C and hydrogen concentrations up to approximately 3.5 at. pct (750 wppm). Fusion welds were made between Ti-CP and Ti-CP and between Ti-CP and Ti-6A1-4V to observe directly the hydrogen redistribution in similar and dissimilar metal couples. Hydrogen activity was found to be significantly affected by alloying elements, particularly Al in solid solution. At a constant Al content and temperature, an increase in the volume fraction of β reduced the activity of hydrogen in α-β alloys. Activity was also found to be strongly affected by temperature. The effect of temperature differences on hydrogen activity was much greater than the effects resulting from alloy composition differences at a given temperature. Thus, hydrogen redistribution should be expected within similar metal couples subjected to extreme temperature gradients, such as those peculiar to fusion welding. Significant hydrogen redistribution in dissimilar alloy weldments also can be expected for many of the compositions in this study. Hydride formation stemming from these driving forces was observed in the dissimilar couple fusion welds. In addition, a basis for estimating hydrogen migration in titanium welds, based on hydrogen activity data, is described.  相似文献   

6.
The present study compares the fatigue and fracture properties of the high-strength β titanium alloy β-Cez with the conventional α+β titanium alloy Ti-6Al-4V, because of increasing interest in replacing α+β titanium alloys with β titanium alloys for highly stressed airframe and jet engine components. This comparison study includes the Ti-6Al-4V alloy in an α+ β-processed condition (for a typical turbine blade application) and the β-Cez alloy in two distinctly different α+β-processed and β-processed conditions (optimized for a combination of superior strength, ductility, and fracture toughness). The comparison principally showed a much lower yield stress for Ti-6Al-4V (915 MPa) than for both β-Cez conditions (1200 MPa). The Ti-6Al-4V material also showed the significantly lower high-cycle fatigue strength (resistance against crack initiation) of 375 MPa (R=−1) as compared to the β-Cez alloy (∼600 MPa, R=−1). Particularly in the presence of large cracks (>5 mm), the fatigue crack growth resistance and fracture toughness of the Ti-6Al-4V material is superior when compared to both β-Cez conditions. However, for small crack sizes, the conditions of both the alloys under study show equivalent resistance against fatigue crack growth. For the β-Cez material, where microstructures were optimized for high fracture toughness (conventional large crack sizes) by thermomechanical processing, maximum K Ic-values of 68 MPa√m of the β-processed β-Cez condition (tested in the longitudinal direction) decreased by ∼50 pct in the presence of small cracks (1 mm). A similar decrease in fracture toughness was obtained by loading the β-processed β-Cez condition perpendicular to the flat surfaces of the pancake-shaped β grain structure (tested in the short transverse direction). These results were discussed in terms of the effectiveness of the crack front geometry in hindering crack propagation. Further, the results of this study were considered for alloy selection and optimized microstructures for fatigue and fracture critical applications. Finally, the advantage of the α+β-processed β-Cez condition in highly stressed engineering components is pointed out because of its overall superior combination of fatigue crack initiation and propagation resistance (especially against small fatigue cracks).  相似文献   

7.
Metallurgical and Materials Transactions B - Oxygen was directly removed from pure titanium and a Ti-6Al-4V alloy by electrolysis in molten MgCl2 at 1173 K (900 °C), where the metal...  相似文献   

8.
Ti-6A14V合金表面改性技术   总被引:1,自引:0,他引:1  
Ti-6Al4V合金作为一种重要的钛合金,其使用量占到了钛合金总使用量的75%~85%,但其耐磨性差、阻燃性差、疏水疏冰性能差、生物相容性不理想等性能缺陷在一定程度上限制了其在某些领域中的应用。首先对Ti-6Al4V合金在各个领域应用时,其性能缺陷的表现形式及危害进行了概述,然后介绍了目前改善Ti-6Al4V合金性能缺陷所普遍采用的以及具有创新性的表面改性技术,评述了部分表面改性技术的优缺点,最后提出了需对Ti-6Al4V合金表面改性技术进一步研究的方向。  相似文献   

9.
Laser keyhole welding of Ti-6Al-4V titanium alloy to AZ31B magnesium alloy was developed, and the correlations of process parameters, joint properties, and bonding mechanism were studied. The results show that the offset from the laser beam center on AZ31B side to the edge of the weld seam plays a big role in the joint properties by changing the power density irradiated at the Ti–Mg initial interface. The optimal range of the offset is 0.3 to 0.4mm in the present study. Some lamellar and granular Ti-rich mixtures are observed in the fusion zone, which is formed by intermixing melted Ti-6Al-4V with liquid AZ31B. The maximum ultimate tensile strength of the joints reaches 266 MPa. Furthermore, the fracture surface consists of scraggly remaining weld metal and smooth Ti surface. The higher the failure strength, the smaller the proportion of smooth Ti surface to whole interface is. Finally, the bonding mechanism of the interfacial layer is summarized by the morphologies and test results of fracture surfaces.  相似文献   

10.
Mechanical property data of a low-cost titanium alloy derived directly from synthetic rutile is reported. A small-scale testing approach comprising consolidation via field-assisted sintering technology, followed by axisymmetric compression testing, has been designed to yield mechanical property data from small quantities of titanium alloy powder. To validate this approach and provide a benchmark, Ti-6Al-4V powder has been processed using the same methodology and compared with material property data generated from thermo-physical simulation software. Compressive yield strength and strain to failure of the synthetic rutile-derived titanium alloy were revealed to be similar to that of Ti-6Al-4V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号