首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
在高速切削、高速滑动磨损和爆炸焊接等工程应用中,材料塑性变形的应变速率高达103~107s-1。在这种情况下,应力状态是多向而不是单向的,塑性变形是绝热的并受到强制约束。这种对塑性变形的约束相当于低应变速率(10-3s-1)下的静态压痕试验。  相似文献   

2.
研究了室温拉伸时应变速率对高氮奥氏体不锈钢18%Cr-18%Mn-0.65%N力学性能和塑性流变行为的影响。结果表明,随应变速率的升高,试验钢的屈服强度Rp0.2升高,而抗拉强度Rm及塑性略有降低;在各应变速率下,试验钢的塑性流变行为均可以用Ludwigson模型进行描述;应变速率的升高对试验钢流变方程参数的影响如下:1)强度系数K1、应变硬化指数n1和n2减小,试验钢的加工硬化能力降低;2)真实屈服强度TYS降低;3)瞬变应变εL减小,表明升高应变速率能够促进位错多系滑移和交滑移。  相似文献   

3.
研究了拉伸应变速率对高氮奥氏体不锈钢18Cr-12Mn-0.55N(质量分数/%)室温力学性能和塑性流变行为的影响.结果表明,随应变速率的升高,实验钢的屈服强度R0.2增大,断后延伸率A减小,抗拉强度Rm略有降低,断面收缩率Z变化不大;在各应变速率下,实验钢的塑性流变行为均可用Ludwigson模型进行描述;随应变速率的升高,实验钢的加工硬化能力和发生屈服时第一根位错开动所需的短程作用力降低;增大应变速率促进多系滑移和交滑移,降低瞬变应变,使实验钢的塑性流变行为在更低的应变水平符合Ludwik模型.  相似文献   

4.
Tamirisakandala等报道了通过在Ti-6A1-4V合金中添加0.1%硼,使合金的口晶粒尺寸由1700μm减小为200μm。然而截至目前,对于添加硼的Ti-6A1-4V合金在热机械加工过程中的变形行为和显微组织演化还不是很清楚。  相似文献   

5.
对不同温度下退火处理后的细晶TC4合金板材进行超塑性拉伸变形,研究该合金在750~850℃,应变速率为3×10-4~1×10-3 s-1条件下的超塑性拉伸变形行为,分析晶粒尺寸、变形温度和β相含量对合金性能的影响。结果表明:退火后的(α+β)型细晶Ti-6Al-4V合金表现出良好的超塑性,并且晶粒越细,最佳超塑性变形温度越低。晶粒直径为2.5μm、β相含量(体积分数)为9.6%的TC4合金在温度为800℃、应变速率为1×10-3 s-1的变形条件下,伸长率最大,达到862%。不同晶粒度合金的应变速率敏感系数m均随变形温度升高先上升后下降,最高达0.61。β晶粒处于α晶粒三叉晶界处,升温或拉伸变形时聚集并沿α晶界长大,形成细长的β晶粒并逐渐变粗大,因此在900℃以上高温下合金的超塑性变形能力降低。  相似文献   

6.
Tamirisakandala等报道了通过在Ti-6Al-4V合金中添加0.1%硼,使合金的β晶粒尺寸由1 700μm减小为200μm。然而截至目前,对于添加硼的Ti-6Al-4V合金在热机械加工过程中的变形行为和显微组织演化还不是很清楚。为此,印度学者ShibayanRoy等人对添加硼的Ti-6Al-4V合金进行了热压缩试验,研究了变形温度和应变速率对变形行为和组织  相似文献   

7.
英国学者Jones研究了具有针状α片层组织的Ti-5Al-5Mo-5V-3Cr合金在等温锻造过程中的流变行为。研究发现,当应变小于0.5时,该合金在流变软化之后都伴随有屈服和少量硬化。具有针状α片层组织的Ti-5Al-5Mo-5V-3Cr合金在低应变下等温锻  相似文献   

8.
黎阳 《上海钢研》2004,(3):36-36
日本东北大学井上明久研究组开发出了一种迄今为止强度最大的大块非晶合金。从过冷液态快冷制备的非晶合金具有比晶态优异的力学性能。井上研究组开发的Co43Fe20Ta3.5B31.5大块非晶合金具有良好的软磁性能和加工变形性能,同时打破了以往非晶材料超高强  相似文献   

9.
《钛工业进展》2013,(1):42-42
钛和钛合金具有高比强度和较高的刚度,广泛应用在航空领域。其中,Ti-6A14V合金的应用最为广泛。然而铸态下的口晶粒较大(约为2.5mm),不利于改善合金的机械性能。为了提高合金的性能,通常采用热机械处理来获取较小晶粒,需要较高的加工费,消耗大量时间。最近,研究者发现,添加少量硼元素会明显细化铸造Ti-6A1-4V合金的口晶粒,而且在晶界处形成的项链状TiB颗粒可提高合金的强度。  相似文献   

10.
朱硕  王哲  贺瑞军  王赟  张允胜  周舸 《中国冶金》2022,32(10):89-96
利用人工神经网络技术研究Ti-6Al-4V合金离子氮化层厚度、硬度与热处理工艺参数之间的关系。以钛合金离子氮化工艺试验为基础,构建以离子氮化温度、保温时间、压力为输入参数,离子氮化层厚度、硬度为输出变量的3层BP神经网络模型,探究模型学习训练过程的最优化算法与神经元个数,预测合金离子氮化层厚度与硬度值。预测结果表明,该模型的综合复相相关系数为0.978 45,网络预测值与样本值相似度较高。获得该合金最优化离子氮化工艺区间,温度为850~880 ℃,保温时间为16 h,压力为200~300 Pa,合金氮化层厚度大于85 μm,硬度大于1 000HV。从而可为钛合金复杂零件离子氮化工艺-组织-性能控制研究提供新的方法与思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号