首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the rat, infusion of a volume of isotonic saline equal to 2% of body weight resulted in an 82% increase in delivery of filtrate out of the proximal tubule but little or, in some animals, no change in the urinary excretion of sodium. By contrast, further degrees of volume expansion resulted in lesser increases in the distal delivery of filtrate, but were associated with a marked increase in the urinary excretion of sodium. Sixty minutes following completion of volume expansion, while the animals were still in positive sosium balance, the urinary excretion of sodium decreased 52% compared to a decrease of only 24% in the distal delivery of filtrate. During the course of progressive volume expansion and during the recovery phase, there was a dissociation between alterations in sodium reabosrption in the proximal convoluted tubule and in the whole kidney. These studies indicate that although the proximal tubule is more sensitive to changes in the extracellular fluid volume, distal nephron sites are ultimately responsible both for the natriuresis of volume expansion and the relative antinatriuresis of the recovery periods.  相似文献   

2.
The tubular transport of urate and sodium was examined by clearance, free-flow micropuncture, intratubular microinjection and precession techniques in control rats and in rats receiving a new uricosuric diuretic, indanyloxyacetic acid (MK-196). The i.v. infusion of MK-196 (50 mg/kg of body wt/hr) resulted in significant increases in the fractional excretion of sodium (FENa) from 0.98 +/- 0.01 to 11.86 +/- 2.88% (P less than 0.001) and in FEurate from 14.1 +/- 1.03 to 56.0 +/- 2.86% (P less than 0.001). End-proximal tubular fluid to plasma inulin (TF/Pinulin) ratios were 2.43 +/- 0.15 and 2.51 +/- 0.10 in control and drug-treated animals, respectively (P = NS). Total urinary urate recovery after MK-196 administration was higher following microinjections of [2-14C] urate into early proximal tubule sites: 70.5 +/- 2.7% in controls vs. 84.9 +/- 0.9 (P less than 0.001), and after microinjections into late proximal tubule sites: 82.8 +/- 2.9% vs. 91.3 +/- 1.9 (P less than 0.05). Urinary precession of urate from inulin was demonstrable following placement of isotopes of these compounds on the surface of the kidney in controls, but was abolished by MK-196. This agent, therefore, inhibits the reabsorption and secretion of urate in the proximal convoluted tubule, the net effect being a marked increase in urinary urate excretion. By contrast, its inhibitory effect on sodium reabsorption is exerted at a site or sites distal to the accessible portion of the proximal tubule. The demonstration of reduced urate reabsorption and normal sodium reabsorption in the proximal tubule suggests that the reabsorption of these constituents of the glomerular filtrate is not intimately linked at this nephron site.  相似文献   

3.
Renal micropuncture and clearance experiments were carried out in rats to study the effect of parathyroid hormone (PTH) on renal tubular HCO-/3 reabsorption. The rats were studied during an initial period of parathyroid deficiency (acute thyroidparathyroidectomy, TPTX) and during infusion of large amounts of bovine PTH. Under normal acid-base conditions, PTH administration to TPTX rats caused a significant rise in proximal tubular fluid HCO-/3 concentration (TFHCO-/3), a decrease in fluid reabsorption, and a fall in proximal HCO-/3 reabsorption from 94.0 to 88.2% (P less than 0.01). In control experiments with mannitol infusion, a comparable reduction in proximal fluid reabsorption occurred without any significant effect on intraluminal HCO-/3 concentration. During acute intravenous HCO-/3 loading, PTH inhibited proximal HCO-/3 reabsorption. However, no change in whole kidney HCO-/3 reabsorption was observed in these experiments or in the animals studied under normal acid-base conditions. The findings are consistent with the view that PTH inhibits proximal tubular HCO-/3 reabsorption with normal or high filtered loads of HCO-/3, but distal segments of the nephron are able to reabsorb the excess delivered from the proximal tubule. Measurements of urinary ammonium and titratable acid indicate that net acid excretion (NH+/4 + TA -- HCO-/3) increases significantly after PTH administration. These results do not provide support for the view that PTH excess causes metabolic acidosis by reducing renal acid excretion.  相似文献   

4.
A controversy presently exists concerning the ability of albumin to inhibit the tubular reabsorption of low-molecular-weight (M(r)) proteins in experimental renal diseases leading to massive proteinuria. We have examined the urinary excretion of albumin and of 2 low-M(r) proteins, beta 2-microglobulin and cystatin C, in rats treated with toxins affecting primarily the glomerulus (puromycin amino-nucleoside and Adriamycin) or the tubule (mercuric chloride and maleic acid). Above a threshold of 100 mg/24 h, albuminuria induced by puromycin aminonucleoside (50 mg/kg) and Adriamycin (5 mg/kg) was associated with a marked increase in the urinary excretion of beta 2-microglobulin and cystatin C peaking at more than 100-fold the baseline levels. These glomerulotoxins did not affect the urinary excretion of the tubular enzyme N-acetyl-beta-D-glucosaminidase. This pattern of effects was completely different from that induced by mercuric chloride (2 mg/kg) and maleic acid (400 mg/kg) which increased the excretion of both N-acetyl-beta-D-glucosaminidase and low-M(r) proteins in rats with albuminuria values below 100 mg/24 h. These results strongly support the hypothesis that at high filtered loads, albumin decreases the tubular uptake of low-M(r) proteins most likely by competition for a common transport mechanism.  相似文献   

5.
OBJECTIVE: To study the effect of cisplatin on plasma concentrations and urinary excretion of carnitine in ten patients with different malignancies treated with chemotherapy. METHODS: Carnitine concentrations were determined using a radioenzymatic assay and other metabolites by routine methods of clinical chemistry. Renal clearances were calculated by dividing urinary excretions by the respective plasma concentrations. RESULTS: Before treatment, all patients had a normal plasma carnitine concentration. During treatment with cisplatin, the plasma total carnitine concentration increased by approximately 30% and normalized 7 days after stopping therapy. Urinary excretion of total carnitine increased by a factor of 10 during cisplatin administration and also normalized 7 days after cessation of chemotherapy. This increase was due to excretion of both free carnitine and acylcarnitine and averaged approximately 1 mmol carnitine per day. Similarly, urinary clearance of total carnitine was increased during therapy with cisplatin by a factor of approximately 8 and returned to normal 7 days after chemotherapy. In comparison, patients with similar malignancies treated with radiotherapy showed no significant increase in renal carnitine excretion. Similar to urinary excretion of carnitine, excretion of glucose and phosphate, two metabolites also reabsorbed by the proximal tubule of the nephron, was increased during therapy with cisplatin. There was a strong linear correlation between urinary excretion of free carnitine and acylcarnitines. CONCLUSIONS: Treatment with cisplatin is associated with a tenfold increase in renal carnitine excretion, most likely due to inhibition of carnitine reabsorption by the proximal tubule of the nephron. Well-nourished patients support this loss of carnitine even after repeated cycles of chemotherapy without developing hypocarnitinaemia. However, cachectic patients with decreased dietary carnitine uptake may develop carnitine deficiency when treated repeatedly with chemotherapies including cisplatin.  相似文献   

6.
Glucose and bicarbonate reabsorption were studied in dogs made edematour by aortocaval fistula (A-V dogs) and in sham-operated dogs. Following construction of the A-V fistula, there was a significant increase in body weight; glomerular filtration rate, renal plasma flow, hematocrit, and sodium excretion decreased significantly. Bicarbonate reabosorption was significantly higher in A-V than in sham dogs both during control and volume expansion. Volume expansion depressed bicarbonate reabsorption significantly in both groups. Glucose reabsorption fell following volume expansion in both groups; glucose reabsorption was significantly higher in A-V dogs than in sham dogs during control and volume expansion. Volume expansion led to a minimal increase in sodium excretion in A-V dogs when compared to the increase in the sham dogs. These data demonsttate that chronic sodium retention is associated with enhanced reabsorption of glucose and bicarbonate. The site in the neophron responsible for the increase in reabsorption of these substances cannot be determined with certainty based on these clearance studies although it is possible that proximal reabsorption may be enhanced in this model.  相似文献   

7.
The reabsorption of 5-methyltetrahydrofolic acid (5-CH3-H4PteGlu) by the renal proximal tubule has an important role in the maintenance of plasma folate concentrations. However, the mechanism by which this vitamin traverses the renal epithelium remains to be determined. Studies in cultured cells have suggested that the folate receptor in association with a probenecid-sensitive anion carrier may be involved in the transmembrane transport of the vitamin. Because 5-CH3-H4PteGlu is reabsorbed and metabolized in the isolated perfused rat kidney (IPRK) in a smaller manner to in vivo models, the IPRK was used to evaluate pathways involved in folate reabsorption. Reabsorption of 5-CH3-H4PteGlu could not be saturated in the isolated perfused rat kidney, even at concentrations up to 2 mumol/L. Folic acid (PteGlu) was used as a competitive inhibitor of FR-dependent reabsorption of 5-CH3-H4PteGlu. When 5-CH3-H4PteGlu was maintained at 1 nmol/L (a concentration at which receptor-mediated transport should be maximal), PteGlu (up to 100 nmol/L) had no effect on reabsorption. The addition of probenecid (1 mmol/L) did not affect the reabsorption of 5-CH3-H4PteGlu but inhibited the fractional excretion of the anion para-aminohippurate. Probenecid also inhibited the urinary excretion of 5-CH3-H4PteGlu metabolites, indicating that reabsorbed 5-CH3-H4PteGlu was metabolized to products that were subsequently secreted into the urine by anion exchange pathways. The physiological importance of a folate receptor-mediated reabsorption of 5-CH3-H4PteGlu appears to be minor in the isolated perfused rat kidney, whereas nonspecific pathways appear to play a major role in the renal folate reabsorption.  相似文献   

8.
Renal tubular handling of P, Ca, Mg and Na was studied in the rat both before and during mild hypertonic NaCl loading (ECVE), using micropuncture and clearance techniques and electron microprobe analysis. Micropuncture was performed at the late proximal and early distal tubule sites. ECVE significantly increased the urinary output of all four elements. In the case of Mg, the increase was relatively small and depended on slight but statistically unsignificant inhibition of reabsorption all along the entire length of the nephron. For Ca, it depended on the inhibition of proximal reabsorption, partially compensated by increased reabsorption along the loop. For P, it depended on proximal inhibition, no important net phosphate movement occurring in the loop during both periods. Ca reabsorption was highly correlated to that of sodium along the proximal tubule and Henel's loop, Ca and Mg reabsorption were closely related to the load delivered at the beginning of the structure. These observations are compatible with the view that tubular reabsorption of Ca and Mg is concentration rather than Tm limited, and that reabsorption of Ca, unlike that of Mg, is linked to the movements of sodium. Following ECVE, the difference between early distal and urinary deliveries increased significantly for Ca and P, but not for Mg. For phosphate, this difference accounted for by 45% of the delivery at the early distal tubule site, at variance with microinjection data obtained in the rat under similar salt loading conditions, which indicated that 17% only of the phosphate distal delivery were reabsorbed along the terminal segments. This discrepancy is discussed in terms of nephron functional heterogeneity.  相似文献   

9.
This study reports the effects of a short-term (60 min) low-dose (20 ng x kg(-1) x min(-1)) infusion of synthetic urodilatin (URO) in patients with liver cirrhosis. URO is a natriuretic peptide. A total of 15 cirrhotic patients with ascites and nine without ascites participated in a randomized, double-blind, placebo-controlled study in a crossover design. Renal hemodynamics were estimated by a clearance technique using radioactive tracers, and tubular handling of sodium was evaluated by the lithium clearance method. The renal effects of URO were characterized by a significant increase in urine sodium excretion rate (UNa) and urine flow rate (V) in the cirrhotic patients without ascites (UNa: 173%; V: 94%) and with ascites (UNa: 219%, P < 0.01; V: 42%, P < 0.01) when compared with placebo infusions. Fractional excretion of sodium increased significantly, indicating a tubular effect of URO on sodium handling. Filtration fraction, lithium clearance (a marker of end-proximal fluid delivery), and fractional excretion of lithium increased, fractional proximal tubular sodium reabsorption decreased, and absolute proximal tubular sodium reabsorption remained unchanged, suggesting increased delivery of isotonic fluid from the proximal tubule during URO infusion. In addition, a significant decrease in fractional distal tubular sodium reabsorption contributed to the natriuresis. In conclusion, URO improved sodium and urine output in cirrhotic patients with and without ascites by enhancing fluid delivery from the proximal tubules in addition to inhibiting fractional sodium reabsorption in the distal nephron.  相似文献   

10.
Dodecanedioic acid (C12), a saturated aliphatic dicarboxylic acid with twelve C atoms, was given as an intraperitoneal bolus to male Wistar rats, with the aim of evaluating C12 suitability as an energy substrate for parenteral nutrition. The 24 h urinary excretion of C12 was 3.9% of the administered dose. C12 kinetics were investigated by a one-compartment model with saturable tissue uptake and reversible binding to plasma albumin. The analysis of plasma concentration and urinary excretion data from different animals yielded the population means of the kinetic parameters: renal clearance was 0.72 ml/min per kg body weight (BW) (much smaller than inulin clearance in the rat), and maximal tissue uptake was 17.8 mumol/min per kg BW corresponding to 123.7 J/min per kg BW. These results encourage the consideration of C12 as a possible substrate for parenteral nutrition. To investigate the effect of C12 administration on glucose kinetics, two other groups of rats, one treated with an intraperitoneal bolus of C12 and the other with saline, were subsequently given an intravenous injection of D[-U-14C]glucose in a tracer amount. Radioactivity data of both control and C12-treated rats were analysed by means of a two-compartment kinetic model which takes into account glucose recycling. The estimates of glucose pool size (2.3 mmol/kg BW) and total-body rate of disappearance (82.1 mumol/min per kg BW) in control rats agreed with published values. In C12-treated rats, the rate of disappearance appeared to be reduced to 36.7 mumol/min per kg BW and the extent of recycling appeared to be negligible.  相似文献   

11.
The renal responses to sympathetic nerve stimulation were studied in saline-expanded rats. The left kidney was partially denervated by crushing the left greater splanchnic nerve. Then the distal portion of the nerve was stimulated with square wave pulses of 0.5 ms duration, voltage twice threshold, and 1 or 2 Hz frequency while monitoring the compound action potential. Fibers with conduction speeds of 13-17 m-s-1 and of 0.7-1 m-s-1 were identified. Only stimulation of the latter appeared to produce changes in renal Na and water excretion. Whole kidney and individual nephron studies were performed alternating control and nerve stimulation periods. Nerve stimulation produced approximately a 25% reduction of the left kidney urine volume and sodium excretion. Glomerular filtration rate and renal plasma flow remained unchanged. Right kidney Na and water excretion, glomerular filtration rate, and renal plasma flow remained constant. In the left kidney, during nerve stimulation, the tubular fluid to plasma inulin concentration ratio increased significantly in the late proximal tubule. We conclude that the antidiuresis and antinatriuresis seen during sympathetic nerve stimulation were caused by increased sodium and water reabsorption in the proximal tubule, probably mediated by the stimulation of slowly conducting unmyelinated fibers. These responses appeared to be unrelated to systemic or intrarenal hemodynamic changes.  相似文献   

12.
The hemodynamic and urinary Na+ excretory response to a 2.5-fold increase in NaCl by i.v. infusion were assessed in conscious male rabbits with either high (BShi, salt-insensitive) or low (BSlo, salt-sensitive) cardiac baroreflex sensitivity, before, and 11-14 days after bilateral renal denervation. Effective renal plasma flow (ERPF) and proximal tubular Na+ reabsorption were measured by para-amino-hippurate (PAH) and Li+ clearances, respectively, before and after NaCl infused for 2 hr at a rate of 0.11 mL/kg/min. Intact BShi rabbits, showed a significant natriuresis within 30 min which was associated with an increase in ERPF and inhibition of proximal tubular reabsorption. The Na+ excretion rate was much slower in BSlo rabbits, while ERPF and proximal tubular reabsorption remained unchanged. Renal denervation reduced MAP, increased basal ERPF, Na+ and Li+ excretion in both groups, and abolished the difference in the renal hemodynamic re-sponse and Li+ excretion to increased NaCl, but not that in the rate of Na+ excretion. The data suggest that BSlo rabbits do not increase their ERPF and Li+ in response to saline because of an inability to bring about an inhibition of renal sympathetic nerve activity. This could be due to an impairment in the sensitivity of their cardiopulmonary baroreceptors. The difference in the rate of natriuresis in the two groups of rabbits which remained after renal denervation could involve an additional hormonal or a local renal mechanism.  相似文献   

13.
Small-conductance, ATP-sensitive K(+)-channels (KATP) localized in apical membranes of both thick ascending limb of the loop of Henle and cortical collecting duct cells may be involved in Na+ reabsorption and K+ secretion in the mammalian kidney. Possible pharmacologic tools to evaluate such an hypothesis may be the antidiabetic sulfonylureas which block K(+)-channels in pancreatic beta-cells. In saline-loaded conscious rats, glyburide (GLY) dose-dependently increased urinary Na+ excretion with little change in urinary K+ excretion after i.p. administration (10-100 mg/kg). In renal clearance studies, GLY at 25 mg/kg i.v. increased Na+ excretion 350% during the first hour post-treatment without affecting K+ excretion, glomerular filtration rate, mean arterial pressure or heart rate. GLY at 50 mg/kg was no more natriuretic than the 25 mg/kg dose, whereas 12.5 mg/kg of GLY increased Na+ excretion 200%. The change in Na+ excretion produced by 25 mg/kg of GLY in streptozotocin-induced diabetic rats was significantly greater than the change after drug vehicle in these animals. It is unlikely that the natriuresis produced by GLY is secondary to changes in plasma insulin and/or glucose because the doses used were far above GLY's insulin-releasing action (i.e., all natriuretic doses would have produced maximal insulin release) and GLY was natriuretic in streptozotocin-induced diabetic rats. It is possible that GLY interferes with reabsorption of Na+ by blocking KATP and thereby interrupting K+ recycling and Na(+)-2Cl(-)-K+ cotransport in the loop of Henle.  相似文献   

14.
This study was designed to determine urinary sodium excretion in response to an oral glucose load in hypertensive patients. Fifteen hypertensive patients and eighteen normotensive subjects were studied after an overnight fast and for 4 h after the ingestion of 100 g glucose. A subgroup of untreated, nonobese, primary hypertensive patients (five of the 15 hypertensive patients) became hyperinsulinemic (total area under the insulin curve [TAUC]: 33,080 +/- 3348 microU ml(-1) 120 min-1) in response to an oral glucose load compared to normotensive subjects (TAUC: 3670 < 13.731 < 23,693 microU ml(-1) 120 min-1) or to be other subgroup of normoinsulinemic hypertensive individuals TAUC: 10,221 +/- 1615 microU ml-1 120 min-1) despite a similar serum glucose concentration in both groups. A significant decrease in renal sodium excretion in the entire hypertensive group (47.1 +/- 4.7%, P < 0.019) compared to the normotensive (20.0 +/- 10.5%) subjects was also observed during the oral glucose tolerance test. Decreased renal sodium excretion was followed by a transient increase in urinary acid excretion. We speculate that the increase in insulin secretion may be responsible for the sodium-dependent increase in intracellular Ca2+, cellular H+ output and blood pressure in a subgroup of salt-sensitive patients with hypertension. New studies should be designed to identify the precise mechanisms involved in the interaction between hypertension, serum insulin-glucose levels and the magnitude of the renal tubule reabsorption abnormality.  相似文献   

15.
This study was designed to evaluate in healthy volunteers the renal hemodynamic and tubular effects of the orally active angiotensin II receptor antagonist losartan (DuP 753 or MK 954). Losartan or a placebo was administered to 23 subjects maintained on a high-sodium (200 mmol/d) or a low-sodium (50 mmol/d) diet in a randomized, double-blind, crossover study. The two 6-day diet periods were separated by a 5-day washout period. On day 6, the subjects were water loaded, and blood pressure, renal hemodynamics, and urinary electrolyte excretion were measured for 6 hours after a single 100-mg oral dose of losartan (n = 16) or placebo (n = 7). Losartan induced no significant changes in blood pressure, glomerular filtration rate, or renal blood flow in these water-loaded subjects, whatever the sodium diet. In subjects on a low-salt diet, losartan markedly increased urinary sodium excretion from 115 +/- 9 to 207 +/- 21 mumol/min (P < .05). The fractional excretion of endogenous lithium was unchanged, suggesting no effect of losartan on the early proximal tubule in our experimental conditions. Losartan also increased urine flow rate (from 10.5 +/- 0.4 to 13.1 +/- 0.6 mL/min, P < .05); urinary potassium excretion (from 117 +/- 6.9 to 155 +/- 11 mumol/min); and the excretion of chloride, magnesium, calcium, and phosphate. In subjects on a high-salt diet, similar effects of losartan were observed, but the changes induced by the angiotensin II antagonist did not reach statistical significance. In addition, losartan demonstrated significant uricosuric properties with both sodium diets.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We investigated the effects of the continuous infusion of various steroids in rats on renal tubular reabsorption of glucose in vivo to elucidate the pathogenesis of steroid-induced glucosuria. Urinary glucose excretion increased 60 min after administration of dexamethasone (2.38 mM). By 120 min, urinary excretion of glucose was three times higher in the dexamethasone group than in the control group (24.1 +/- 4.6 versus 72.4 +/- 16.7 micromol); the plasma level of glucose did not increase. Dexamethasone had no effect on the resorption of 1,5-anhydro-D-glucitol, which is a glucose-resembling polyol that is actively absorbed by the renal tubules as glucose. Neither estradiol nor progesterone increased urinary excretion of glucose. These findings suggest that continuous administration of a high-dose glucocorticoid selectively influences the glucose reabsorption system in the kidney.  相似文献   

17.
1. Animal studies have shown that angiotensin II has a biphasic effect on urinary sodium excretion. To examine whether this is also true in man, we studied seven salt-replete male subjects in a single-blind placebo-controlled manner. 2. While undergoing maximum diuresis, subjects were infused with 0, 1, 2, 5 or 10 ng of angiotensin II min-1 kg-1 over 80 min. Subjects were studied while seated, and stood every 20 min for urine collection. 3. Angiotensin II produced a dose-dependent antidiuretic effect. The urine flow rate, in ml/min expressed as the change from baseline with increasing dose of angiotensin, was: +3.4 +/- 1.77, -1.26 +/- 0.49 (P < 0.05), -2.75 +/- 1.23 (P < 0.05), -4.21 +/- 0.82 (P < 0.05) and -6.51 +/- 1.07 (P < 0.01). 4. In contrast, the effect of angiotensin II on sodium excretion showed a flat dose-response curve beyond 5 ng min-1 kg-1. The urinary sodium excretion, in mumol/min expressed as the change from baseline with increasing dose of angiotensin, was: 9.5 +/- 21.2, -18.9 +/- 29.6, -37.0 +/- 11.6 (P < 0.05), -67.7 +/- 19.6 (P < 0.01) and -63.8 +/- 14.3 (P < 0.01). 5. The fractional distal reabsorption of sodium, determined by using the lithium clearance technique, showed a rise with all doses of angiotensin II used and reached statistical significance with the top two doses. 6. Unlike antidiuresis, antinatriuresis after graded doses of angiotensin II in human subjects showed a flat dose-response curve beyond 5 ng min-1 kg-1. Pressor doses of angiotensin II also have a significant effect on the distal tubule in promoting sodium reabsorption.  相似文献   

18.
Renal function was studied in 16 patients with cystic fibrosis, aged 5 to 19 years. The mean glomerular filtration rate and filtration fraction were increased compared to those in controls. Basal urinary sodium excretion as well as renal responses to oral and intravenous sodium loads were low, indicating an increased renal sodium reabsorption. Diluting capacity, measured as free water clearance, was decreased because of a low distal sodium delivery which might indicate an increased proximal sodium reabsorption.  相似文献   

19.
Acid and alkaline phosphatases in the kidney of a few fishes   总被引:1,自引:0,他引:1  
The localization of acid and alkaline phosphatases in the kidney of Cirrhinus reba, Ompak bimaculatus and Labeo gonius has been studied. In all these fishes, the enzymes are found in the proximal tubule. The activity of alkaline phosphatase is more stronger than acid phosphatase. The renal capsule, distal tubule, collecting tubule and interstitial hematopoietec tissue are all phosphatase negative. The activity is more stronger in the first proximal tubule than in the second tubule. It is probable that acid phosphatase is associated with the intracellular digestion of the macromolecules absorbed and alkaline phosphatase with the absorption of glucose from the tubular lumen.  相似文献   

20.
Ochratoxin A (OTA) is a widespread nephrotoxin which causes porcine nephropathy and is supposed to have caused the human Balkan endemic nephropathy. We performed experiments in vivo and in vitro to elucidate the mechanism of OTA action in renal epithelium. Application of OTA to male Wistar rats [1.25 mumol/(kg.day)] for 6 days led to a reduction of glomerular filtration rate (to 63% of control), an increased fractional water (194% of control), Na+ (199% of control), K+ (147% of control) and Cl- (270% of control) excretion and an increased dependence of the osmole clearance on urine flow. Acute application of OTA to rats (3 mumol/kg) increased urinary pH from 6.0 +/- 0.2 to 6.6 +/- 0.1 and urinary NaCl excretion, but decreased titratable acid excretion to 47% of control. As these in vivo findings may be the result of an action of OTA beyond the proximal tubule ("postproximal") we investigated the effect of OTA on cultured Madin-Darby canine kidney (MDCK) cells, regarded as a model of collecting duct epithelium. In confluent monolayers formed by MDCK cells OTA reduced the number of domes in a dose-dependent manner and impaired the formation of a transepithelial Cl- gradient. Electrophysiological measurements in giant MDCK cells revealed that OTA blocks fractional anion conductance of the plasma membrane with an IC50 value of 30 +/- 5 nmol/l, unmasking OTA as a naturally occurring anion conductance blocker about 20-times more effective than the most potent synthetic blocker 5-nitro-2-(3-phenylpropyl-amino) benzoic acid (NPPB) (IC50 = 600 +/- 50 nmol/l).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号