首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
Encephalopathy and neurological disorders are a major manifestation of pediatric AIDS. Although HIV-1 can replicate in cells of neuronal and glial origin, it is yet unclear whether immature neural cells, which are present during nervous system development, can support HIV-1 replication and whether neurotrophic factors can modulate HIV-1 gene expression. In this study we show that a glial cell line with a phenotype closely resembling immature glial cells is more permissive to HIV-1 infection and replication than a neuroblastic cell line. After HIV-1 infection or after transfection of these cells with the HIV-1 LTR-CAT reporter gene alone or in the presence of Tat, both HIV-1 replication and viral gene expression progressively decrease in the neuronal cell line, while they increase in the glial cell line. In both cell types viral gene expression and replication are augmented by the addition to the cells of nerve growth factor (NGF) at concentrations which induce neuronal differentiation. However, these effects are again more evident with the glial cell type, suggesting that immature glial cells may represent one of the major targets and reservoirs of HIV-1 in the developing nervous system. As NGF and Tat act synergistically in inducing HIV-1 gene expression, these data also suggest that during development the presence of high levels of neural trophic factors may activate viral replication and render the CNS more susceptible to the deleterious effects of HIV-1 infection.  相似文献   

4.
5.
Neurons and astrocytes have a close anatomic and functional relationship that plays a crucial role during development and in the adult brain. Astrocytes in the central nervous system (CNS) express receptors for a variety of growth factors (GFs), neurotransmitters and/or neuromodulators; in turn, neuronal cells can respond to astrocyte-derived GFs and control astrocyte function via a common set of signaling molecules and intracellular transducing pathways. There is also increasing evidence that soluble factors from lymphoid/mononuclear cells are able to modulate the growth and function of cells found in the CNS, specifically macroglial and microglial cells. Furthermore, glial cells can secrete immunoregulatory molecules that influence immune cells as well as the glial cells themselves. As neuronal and immune cells share common signaling systems, the potential exists for bidirectional communication not only between lymphoid and glial cells, but also between neuronal cells and immune and glial cells. In the present work, interactions of luteinizing-hormone-releasing hormone (LHRH) and the astroglial cell are proposed as a prototype for the study of neuroimmune communication within the CNS in the light of (1) the commonality of signal molecules (hormones, neurotransmitters and cytokines) and transduction mechanisms shared by glia LHRH neurons and lymphoid cells; (2) the central role of glia in the developmental organization and pattern of LHRH neuronal migration during embryogenesis, and (3) the strong modulatory role played by sex steroids in mechanisms involved in synaptic and interneuronal organization, as well as in the sexual dimorphisms of neuroendocrine-immune functions. During their maturation and differentiation in vitro, astroglial cells release factors able to accelerate markedly the LHRH neuronal phenotypic differentiation as well as the acquisition of mature LHRH secretory potential, with a potency depending on both the 'age' and the specific brain localization of the astroglia, as well as the degree of LHRH neuronal differentiation in vitro. Regional differences in astroglial sensitivity to estrogens were also measured. Different experimental paradigms such as coculture and mixed-culture models between the immortalized LHRH (GT1-1) neuronal cell line and astroglial cells in primary culture, disclosed the presence of a bidirectional flow of informational molecules regulating both proliferative and secretory capacities of each cell type. The importance of adhesive mechanisms in such cross-talk is underscored by the complete abolition of GT1-1 LHRH production and cell proliferation following the counteraction of neuronal-neuronal/neuronal-glial interactions through addition of neural-cell adhesion molecule antiserum. Other information came from pharmacological experiments manipulating the astroglia-derived cytokines and/or nitric oxide, which revealed cross-talk between the neuronal and astroglial compartments. From the bulk of this information, it seems likely that interactions between astroglia and LHRH neurons play a major role in the integration of the multiplicity of brain signals converging on the LHRH neurons that govern reproduction. Another important facet of neuronal-glial interactions is that concerning neuron-guided migration, and unraveling astroglial/LHRH-neuronal networks might then constitute an additional effort in the comprehension of defective LHRH-neuronal migration in Kallman's syndrome.  相似文献   

6.
The intermediate filament nestin is highly expressed in multipotential stem cells of the developing central nervous system (CNS). During neuro- and gliogenesis, nestin is replaced by cell type-specific intermediate filaments, e.g. neurofilaments and glial fibrillary acidic protein (GFAP). In this study, we demonstrate that nestin expression is re-induced in reactive astrocytes in the lesioned adult brain. Following ischaemic and mechanical lesioning, a strong and sustained expression of nestin was noted in GFAP-positive cells surrounding the lesion site. Lesion experiments in transgenic mice carrying the lacZ gene under control of regulatory sequences from the nestin gene suggested that the upregulation of nestin in reactive astrocytes is mediated via the same sequences that control nestin expression during CNS development. These observations and recent data on the co-expression of glial and neuronal marker antigens in reactive astrocytes point to a close relationship between proliferating astrocytes and neuroepithelial precursor cells.  相似文献   

7.
The multiplicity and complexity of secondary injury processes following brain trauma in vivo make it difficult to elucidate the roles of specific injury mechanisms. As with other areas of CNS injury, such as ischemia, this has led to the development of in vitro models. Here we describe a new trauma model, in which standardized trauma is delivered to neuronal/glial cultures using a special mechanical device that produces concentric circular cuts in the cell layer. Changes in the number of circles (from 1 to 6) allows variation of injury severity. Comparison studies of cell death induced by such trauma in glial and neuronal/glial cultures demonstrated that glial cells are relatively resistant to this injury, and that the cell death after trauma to neuronal/glial cultures reflects primarily neuronal death. Consistent with other in vivo and in vitro studies, glutamate receptor antagonists MK 801 and MCPG were neuroprotective. Thus, this model appears useful for studying glutamatergic mechanisms involved in secondary injury, and may prove useful for evaluating certain pharmacological strategies for CNS trauma.  相似文献   

8.
Jimpy is a shortened life-span murine mutant showing recessive sex-linked inheritance. The genetic defect consists of a point mutation in the PLP gene and produces a severe CNS myelin deficiency that is associated with a variety of complex abnormalities affecting all glial populations. The myelin deficiency is primarily due to a failure to produce the normal amount of myelin during development. However, myelin destruction and oligodendrocyte death also account for the drastic myelin deficit observed in jimpy. The oligodendroglial cell line shows complex abnormalities in its differentiation pattern, including the degeneration of oligodendrocytes through an apoptotic mechanism. Oligodendrocytes seem to be the most likely candidate to be primarily altered in a disorder affecting myelination, but disturbances affecting astrocytes and microglia are also remarkable and may have a crucial significance in the development of the jimpy disorder. In fact, the jimpy phenotype may not be attributed to a defect in a single cell but rather to a deficiency in the normal relations between glial cells. Evidences from a variety of sources indicate that the jimpy mutant could be a model for disturbed glial development in the CNS. The accurate knowledge of the significance of PLP and its regulation during development must be of vital importance in order to understand glial abnormalities in jimpy.  相似文献   

9.
10.
Employing clonal cell lines derived from rat embryonic hippocampal cells, we detected neuropeptide Y (NPY) mRNA in three progenitor subcloned cell lines. These cell lines upon differentiation express markers indicative of commitment to either neuronal (H19-7; NF +, GFAP -), glial (H19-5; GFAP +, NF -), or bipotential (H583-5; NF +, GFAP + ) lineages. Induction of differentiation was associated with the persistence of the NPY mRNA, however, in the differentiated H19-7 cells a 20-fold increase in NPY mRNA levels was observed (P<0.05). NPY immunoreactivity was observed only in cells with a differentiated neuronal phenotype. The cellular radioimmunoassayable NPY peptide levels increased twelve-fold without a change in extracellular NPY peptide levels by multi-factorially induced neuronal or glial cell differentiation. The differentiated H19-5 cells expressed lower levels of NPY that could not be immunocytochemically detected. The peripheral sympathetic PC-12 neuronal cells examined in the undifferentiated and nerve growth factor-driven differentiated states expressed NPY only upon differentiation. We conclude that NPY is expressed by the cultured undifferentiated and differentiated rat hippocampal clonal cell lines, while the peripheral sympathetic PC-12 neuronal cell line only expresses the NPY gene upon differentiation. These immortalized embryonic neural cell line(s) will provide a hippocampal cell line(s) to conduct future in-vitro investigations targeted at determining the cellular and molecular mechanisms governing NPY gene expression.  相似文献   

11.
The present paper will summarize two important aspects of the interactions between steroids and the brain, which have recently been studied in the authors' laboratory. In particular the paper will consider data on: (1) the significance of the two isoforms of the 5alpha-R during brain ontogenesis and development, and (2) the cross-talk between glial and neuronal elements, particularly in relation to the metabolism of sex hormones. (1) The data obtained have shown that the 5alpha-R type 1 enzyme is constitutively expressed in the rat CNS at all stages of brain development. Moreover, the expression of the 5alpha-R type 1 is similar in males and in females, and does not appear to be controlled by androgens. The gene expression of the 5alpha-R type 2 is totally different. This isoform appears to be expressed in the rat brain almost exclusively in the late fetal/early post-natal life and is controlled by testosterone. (2) The present data show that two cell lines derived respectively from a rat glioma (C6 cell line) and from a human astrocytoma (1321N1 cell line) are able to convert testosterone and progesterone into their corresponding 5alpha-reduced metabolites dihydrotestosterone and dihydroprogesterone. The possibility that secretory products of normal and tumoral brain cells might be able to influence steroid metabolism occurring in the two glial cell lines previously mentioned has been considered.  相似文献   

12.
The steroid hormone 20-hydroxyecdysone (20-HE) controls diverse aspects of neuronal differentiation during metamorphosis in the hawkmoth Manduca sexta. In the present study we have examined the effect of 20-HE on glial cells of the brain during the metamorphic period. The antennal (olfactory) lobe of Manduca provides an ideal system in which to study effects of hormones on glial cells, since three known classes of glial cells participate in its development, and at least one type is critically important for establishment of normal neuronal morphology. These glial cells, associated with the neuropil, form boundaries for developing olfactory glomeruli as a result of proliferation and migration. We determined whether glial cells proliferate in response to 20-HE by injecting a pulse of 20-HE into the hemolymph at different stages of development and monitoring proliferation of all three types of glial cells. Hormone injections at the beginning and end of metamorphic development, when hormone titers are normally low, did not stimulate proliferation of neuropil-associated glial cells. Injections during the period when hormone titers are normally rising produced significant increases in their proliferation. Injections when hormone titers are normally high were ineffective at enhancing their proliferation. One other class of glial cells, the perineurial cells, also proliferate in response to 20-HE. Thus, glial proliferation in the brain is under the control of steroid hormones during metamorphic development.  相似文献   

13.
Kv1.1, a Shaker-like voltage-gated potassium channel, is strongly expressed in a variety of neurons in adult rodents, in which it appears to be involved in regulating neuronal excitability. Here we show that Kv1.1 is also expressed during embryonic development in the mouse, exhibiting two transient peaks of expression around embryonic day 9.5 (E9.5) and E14.5. Using both in situ hybridization and immunocytochemistry, we have identified several cell types and tissues that express Kv1.1 RNA and protein. At E9.5, Kv1.1 RNA and protein are detected transiently in non-neuronal cells in several regions of the early CNS, including rhombomeres 3 and 5 and ventricular zones in the mesencephalon and diencephalon. At E14.5, several cell types in both the CNS and peripheral nervous system express Kv1.1, including neuronal cells (sensory ganglia and outer aspect of cerebral hemispheres) and glial cells (radial glia, satellite cells, and Schwann cell precursors). These data show that Kv1.1 is expressed transiently in a variety of neuronal and non-neuronal cells during restricted periods of embryonic development. Although the functional roles of Kv1.1 in development are not understood, the cell-specific localization and timing of expression suggest this channel may play a role in several developmental processes, including proliferation, migration, or cell-cell adhesion.  相似文献   

14.
The preoptic area/anterior hypothalamus (POA/AH) is a site where hormones dramatically influence development. The POA/AH is comprised of multiple subgroups, but little is known about the derivation of these subgroups during development. Results from several laboratories suggest that some cells in the POA/AH originate from progenitor cells in other regions of the developing nervous system. We are exploring pathways for migration in the developing POA/AH in two ways. First, we are examining the distribution of radial glial processes as potential migratory guides using immunocytochemistry. We have identified a transient pattern of radial glial processes from the lateral ventricles to the pial surface at the base of the POA/AH. Additionally, the expression of a molecule in radial glial processes originating in the third ventricle was decreased by prenatal treatment with testosterone. Second, we are utilizing time-lapse video microscopy in vitro to assess the extent and direction of movements of fluorescent dye-labeled cells at different ages in brain slice preparations from the POA/AH of developing rats. Data from these studies indicate that cell migration in the POA/AH includes movements along dorsal-ventral routes and from lateral to medial positions, in addition to the predicted medial to lateral pathway away from the third ventricle. Several researchers have examined effects of gonadal steroids on neurite outgrowth, cell differentiation, cell death, and synaptogenesis. The determination of cell position, however, may be a key event influenced by gonadal steroids earlier in development. The characterization of migratory pathways that contribute to permanent changes in brain structure and ultimately function is essential for unraveling the process of sexual differentiation.  相似文献   

15.
Two morphogenetic mutations, twist and Delta, that affect the embryonic development of Drosophila in known ways were used to examine the derivation and function of the outer layers of the central nervous system (CNS). Both the extracellular neural lamella, which ensheaths the CNS, and its source, the underlying perineurial sheath cell layer, fail to develop in Drosophila embryos that are homozygous for a loss of function mutation in the twist gene, and which thus lack mesodermal derivatives. The cell layer immediately below the perineurial sheath cells, here termed barrier glial cells, constitute the ion permeability barrier in wild-type embryos. They are present in twist mutant embryos, appear to be normal at the ultrastructural level, and function as a blood-brain ion barrier. The apparent derivation of perineurial sheath cells from mesodermal precursors distinguishes them from neurons, glia and other nonneural components of the CNS, such as tracheae, all of which are of ectodermal origin. We confirm Scharrer's interpretation of the relationship between the perineurium and underlying neuroglia. In embryos homozygous for the neurogenic mutant Delta, an embryonic lethal in which excess ventral blastoderm gives rise to neuroblasts, the CNS forms as an amorphous cell mass, with discontinuous perineurial sheath and barrier glial cell layers. We propose that the cell mass is permeable to lanthanum ions and fails to form a blood-brain barrier because volume growth prevents the formation of continuous surface cell layers.  相似文献   

16.
17.
18.
Platelet-Activating Factor (PAF) is a potent lipid mediator involved in physiological and pathological events in the nervous tissue where it can be synthesized by two distinct pathways. The last reaction of the de novo pathway utilizes CDPcholine and alkylacetylglycerol and is catalyzed by a specific phosphocholinetransferase (PAF-PCT) whereas the remodelling pathway ends with the reaction catalyzed by lyso-PAF acetyltransferase (lyso-PAF AcT) utilizing lyso-PAF, a product of phospholipase A2 activity, and acetyl-CoA. The levels of PAF in the nervous tissue are also regulated by PAF acetylhydrolase that inactivates this mediator. We have studied the activities of these enzymes during cell proliferation and differentiation in two experimental models: 1) neuronal and glial primary cell cultures from chick embryo and 2) LA-N-1 neuroblastoma cells induced to differentiate by retinoic acid (RA). In undifferentiated neuronal cells from 8-days chick embryos the activity of PAF-PCT was much higher than that of lyso-PAF AcT but it decreased during the period of cellular proliferation up to the arrest of mitosis (day 1-3). During this period no significant changes of lyso-PAF AcT activity was observed. Both enzyme activities increased during the period of neuronal maturation and the formation of cellular contacts and synaptic-like junctions. The activity of PAF acetylhydrolase was unchanged during the development of the neuronal cultures. PAF-PCT activity did not change during the development of chick embryo glial cultures but lyso-PAF AcT activity increased up to the 12th day. RA treatment of LA-N-1 cell culture in proliferation decreased PAF-PCT activity and had no significant effect on lyso-PAF AcT and PAF acetylhydrolase indicating that the synthesis of PAF by the enzyme catalyzing the last step of the de novo pathway is inhibited when the LA-N-1 cells are induced to differentiate. These data suggest that: 1) in chick embryo primary cultures, both pathways are potentially able to contribute to PAF synthesis during development of neuronal cells particularly when they form synaptic-like junctions whereas, during development of glial cells, only the remodelling pathway might be particularly active on synthesizing PAF; 2) in LA-N-1 neuroblastoma cells PAF-synthesizing enzymes coexist and, when cells start to differentiate the contribution of the de novo pathway to PAF biosynthesis might be reduced.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号