首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
In this article, an electromagnetic field simulation and a flow analysis model are performed to describe the three-dimensional electromagnetic field distribution and the electromagnetically driven flow characteristics in a round-bloom mold with a low-frequency in-mold rotary electromagnetic stirrer. The interaction between the induced flow and the inertial impinging jet from a straight-through submerged entry nozzle (SEN) of the caster is considered. The effects of stirrer current and frequency on the electromagnetic field and the flow in the round-bloom mold are investigated, and a strategy to optimize the stirring parameters is proposed. The results show that the distributions of magnetic flux density and electromagnetic force magnitude are nonuniform in a three-dimensional electromagnetic stirring (EMS) configuration. There exists a significant axial induced component of electromagnetic force. The flow in the in-mold EMS system is characterized by a dominant swirling movement at the transverse sections, coupled with the recirculating flows in the axial direction. An upper recirculation zone and a lower recirculation zone with the reverse melt flowing are found near the strand wall at the axial location close to the middle of the stirrer, and another recirculation zone is formed due to the interference of the induced flow with the jet from SEN. The meniscus surface has a swirl flow, and the meniscus level rises near the bloom strand wall and sinks around the SEN wall. All of these flow features are closely associated with metallurgical performances of the in-mold rotary stirrer. With the increase of stirring current and the decrease of frequency, the magnetic flux magnitude increases. There is an optimum frequency to obtain a peak of electromagnetic force magnitude and maximum tangential velocity. For a mold rotary EMS system, to determine the optimum stirring intensity, it is necessary to make a compromise between a larger tangential velocity and a relatively quiescent meniscus surface.  相似文献   

2.
It has been recognized that flocculation performance can be related to the mixing process. This process has traditionally been described by vessel average parameters such as the root-mean square velocity gradient ?, which may not represent local mixing conditions within a vessel, particularly in the impeller vicinity. The analysis of turbulence in the flocculator allows a more refined specification of flow, energy, and dissipation, which have long been known to be important to the flocculation process. Presented is a study to characterize hydrodynamic conditions in the impeller zone of an upflow solids-contacting clarifier using a laser Doppler anemometer. Results were analyzed based on an analogy of the impeller-generated flow to a swirling radial jet. It was found that mean and fluctuating velocities scaled on the tip speed of the impeller. Use of the swirling radial jet analogy also allowed the scaling of local dissipation rates. Results compared favorably to other impeller studies and true radial jets, indicating the applicability of concepts for the assessment of other flocculation impellers. It was found that local dissipation rates near the impeller were significantly higher than the vessel average values. These high values highlight the need for further study of the impact of local mixing conditions on flocculation performance.  相似文献   

3.
通过调整多侧孔水口侧孔射流方向来实现结晶器内钢流的旋转,并设计了一种易于加工、使用寿命长的多侧孔新型旋流水口。建立了圆坯结晶器内三维流动、传热数学模型,计算分析了直筒形水口和新型旋流水口条件下结晶器内的流场和温度场。结果表明:通过调整多孔水口侧孔射流方向可以实现结晶器内钢流的旋转,新型旋流水口能显著降低钢水的冲击深度,促进夹杂物上浮,使热中心上移,提高弯月面的温度。  相似文献   

4.
A new process for swirling flow generation in the submerged entry nozzle (SEN) in continuous casting process of steel was proposed. A rotating electromagnetic field was set up around the SEN to induce swirling flow by Lorentz force. The flow and temperature fields in the SEN and round billet mold with electromagnetic swirling were numerically simulated and then verified by the electromagnetic swirling model experiment of low melting point alloy. The effects of divergent angle of the SEN on the flow and temperature fields in mold with electromagnetic swirling were investigated. The electromagnetic swirling flow generator (EMSFG) could effectively induce swirling flow of molten steel in the SEN, which consequently improved greatly the flow and temperature fields in the mold. Below the nozzle outlet in mold, with the increase of divergent angle, the stream of bulk flow diverged more widely, the high temperature zone shifted up, and the temperature field became more uniform. Above the nozzle outlet in mold, with 350 A electromagnetic swirling, when the divergent angle of the SEN increased, the upward flow velocity and the meniscus temperature first increased and then decreased. With a divergent angle of 60~, the upward flow velocity and meniscus temperature reaced the largest value.  相似文献   

5.
An experimental study was conducted to investigate the flow field in a rectangular basin with a line inlet and a circular outlet. The basin has a length about four times of the water depth and the outlet level was varied in the study. The flow field in the basin can be characterized into three zones: the wall jet zone with an induced recirculation eddy, the outlet zone in the vicinity of the outlet, and the transition zone in between the two zones. The spreading of the wall jet was found to significantly exceed that of a classical wall jet. In the transition zone, the wall jet separated from the basin bed due to the adverse pressure gradient created by the jet impingement on the outlet wall. Upstream of the outlet, a special three-dimensional balloon-like flow pattern was observed. Within a distance of three times of the outlet diameter, potential flow theory predicts well the measured velocity.  相似文献   

6.
The top-blowing supersonic oxygen jet is now used widely in steelmaking and metal refining processes. However, the ambient temperature and oxygen flow rate is changed during top-blowing process, making the flow field of supersonic oxygen jet unstable. Hence, it is very important to research the behaviour of supersonic oxygen jet in high ambient temperature. In the present study, the supersonic coherent jet flow fields with 2 kinds of Laval nozzle structures were analysed at various ambient temperature conditions. The total temperature and axial velocity were measured by experiment to verify simulation results. Based on the results, the design method of characteristic-line equation could be more effective in the control the velocity vector of oxygen jet, compared with the one-dimension isoentropic flow theory. As a result, the Laval nozzle designed by characteristic-line equation could suppress the forming of shock wave, reduce the radial velocity and increase the stirring ability of oxygen jet under various ambient conditions.  相似文献   

7.
Swirling flow tundish is a new kind of tundish which has shown good effects on flotation of inclusion and reduction of inclusion content. In this paper, studies have been carried out on the flow fields in a one‐strand slab tundish. A full scale model of the flow patterns in the water model tundish was developed using a self‐developed code. RTD curves under different experimental conditions were obtained from both physical and numerical simulations. The effects of the swirling flow chamber geometry and the flowrate on flow patters in the tundish were discussed and compared with results from the numerical simulation. Validation of the self‐developed codes was achieved by comparing the physical and numerical results of the RTD curves and the mean rotational velocities in swirling flow tundish. As a result, significant rotational flow in the swirling flow chamber and asymmetrical flow pattern in the whole tundish were confirmed and the effects of these parameters on dead zone and mean residence time were also obtained. Further and more comprehensive studies are needed to optimize the design and application of such tundishes.  相似文献   

8.
通过改变水口侧孔钢水流动方向可以控制结晶器内钢水流动与换热。采用流体动力学与凝固模拟方法对比研究了浸入式四分径向水口不同出流方向对大方坯连铸结晶器内流动、传热和凝固行为的影响。结果表明,侧孔方向对浇注过程结晶器内钢水的流动与凝固行为有显著影响。当水口侧孔水平旋转角度为30°时,结晶器内形成较好的水平旋流,可以有效降低侧孔出流钢水对坯壳的冲刷作用,并有利于结晶器内自由液面过热度的提高。比较不同侧孔出流角度发现,利用普通径向四分水口在一定安装角度下的旋流效应不仅对于初生坯壳的均匀生长以及自由液面的冶金效果产生有利影响,还可能在不改变水口结构条件下获得类似结晶器电磁搅拌的旋流效应。  相似文献   

9.
Detailed experiments on vertical turbulent plane jets in water of finite depth were carried out in a two-dimensional water tank. The jet velocities were measured with a laser Doppler velocimeter (LDV). The LDV measurement covers the entire flow regime: the zone of flow establishment (ZFE), the zone of established flow (ZEF), the zone of surface impingement (ZSI), and the zone of horizontal jets (ZHJ). From the experimental results, the following conclusions are reached. First, the jet flow is independent of the Reynolds number if the Reynolds number is sufficiently large to produce a turbulent jet. Second, in the initial ZFE, the jet flow is nonsimilar and is characterized by the two free shear layers along the two edges of the jet orifice. Third, the jet flow in ZEF is self-similar. Both mean and fluctuation velocities are scaled with the mean jet centerline velocity. The turbulent shear stress is predictable by Prandtl's third eddy viscosity model. The spreading of the confined vertical jets is larger than that of a free jet, so is the faster decay of jet centerline velocity. Fourth, in ZSI the jet flow is nonsimilar and high turbulent intensities were found. The vertical turbulent jet transforms into two opposite horizontal surface jets after the impingement. And finally, the maximum velocity of the horizontal surface jet in ZHJ decays according to a power law.  相似文献   

10.
以200t转炉5孔氧枪为原型,优化设计内外喷孔相同倾斜角度下不同流量配比的交错氧枪.基于射流特性仿真研究,通过数值模拟方法,分析交错氧枪喷头射流特性与传统5孔氧枪的不同,探讨内外孔流量比变化对氧枪射流轴向速度衰减和有效冲击面积的影响规律.结果 表明:交错氧枪内孔射流轴向速度大于传统氧枪,外孔的轴向速度与传统氧枪相近,但...  相似文献   

11.
Single-phase turbulent fluid flow inside and below a burner model was studied to better understand the fluid flow processes occurring inside and below flash smelting burners. The effect of Reynolds number and temperature on the axial velocity profiles in a 1/4 scale experimental air model of a jet flow burner and shaft were investigated. Laser Doppler anemometry (LDA) was used to determine the mean and fluctuating axial velocity components within and below this burner. Also experimentally determined were the pressure profiles along the length of the burner and shaft and the inlet air and wall temperature profiles. In the experiments, the Reynolds number range was approximately 60,600 to 76,100, which was in the turbulent flow regime. A mathematical model was used to simulate axisymmetric two-dimensional air flow through a jet flow burner and shaft for Reynolds numbers of 60,000 to 304,000. The axial velocity predictions of the high axial velocity region and surrounding region in the shaft were in reasonable agreement with the axial velocity experimental results. Recommendations are made for the improvement of the design of flash smelting burners.  相似文献   

12.
张静  马靓  吴会平 《钢铁》2019,54(8):116-123
 为研究水口结构形状对连铸中低碳钢结晶器内流场和温度场分布的影响,采用有限容积法建立连铸圆坯三维数学模型,模拟了不同水口形状下圆铸坯的流场和温度场。结果表明,在水口浸入深度为80 mm、其他参数不变时,与直水口相比,旋流水口使钢水冲击深度降低,结晶器内涡流增强,弯月面温度和二冷区凝固率提高,且随着水口数量的增加,弯月面波高和结晶器出口温度降低;采用旋流水口并施加结晶器电磁搅拌(M EMS)时,结晶器中钢液温度升高,弯月面有卷渣行为,结晶器出口未形成凝固坯壳。在实际应用中,应避免同时使用M EMS和旋流水口,或使用旋流水口时采用低强度的M EMS。  相似文献   

13.
Water-model experiments were carried out on 1:14-scale models of venturi, distributor, and jet-flow burners to ascertain flow patterns at varying Reynolds numbers (60,000 to 507,000) using time-lapse streak photography and video streak photography. Digital particle image velocimetry (DPIV) was used to determine the axial and radial velocities and to estimate the turbulence kinetic-energy field beneath the distributor burner. In the DPIV experiments, a temporal instability in the main jet exiting from the burner occurred at a Reynolds number=104,000, a Strouhal number≈3×10−3, and a large expansion ratio (shaft/burner-diameter ratio=10). The main jet usually pointed away from the burner inlet but was also observed to fluctuate and precess in a quasi-random fashion. Recom-mendations are made for improving flash-smelting burner performance by promoting conditions to eliminate precessing. The use of higher Reynolds numbers was recommended to improve both the use of shaft volume and the mixing of the concentrate particles and gas stream. A three-dimensional (3-D) mathematical model was used to simulate the water flow through the distributor burner, shaft, and settler. The predicted velocity field consisted of a main jet pointing away from the burner inlet and a large recirculation zone in the center of the shaft. The predicted and measured velocity magnitudes compared well in the recirculation zone, but the steady-state mathematical model predicted higher velocity values in the main jet than were experimentally determined.  相似文献   

14.
王焕洋 《宽厚板》2008,14(3):4-6
根据相似原理,模拟漩流中间包及漩流室内钢液的流动,研究不同漩流室直径、高度对夹杂物在漩流室内向心聚集上浮的影响,验证漩流室对夹杂物的去除效果。结果表明,漩流室的引入有利于夹杂物的上浮去除,夹杂物的上浮率平均由原来的92.35%提高到97%以上。  相似文献   

15.
In this paper, attention has been focused on the near-exit region of a round turbulent free jet to study the large-scale coherent structures and to document the signatures of the vortices over a range of Reynolds numbers. Particle image velocimeter measurements were conducted at three jet exit Reynolds numbers of 10,000, 30,000, and 55,000. The large-scale structures in the near field (X/D<12) were investigated by performing a proper orthogonal decomposition analysis of the velocity fields. A vortex identification algorithm was complemented by swirling strength maps to identify the vortex centers, rotational sense, size, and circulation of the vortices. The influence of the Reynolds number on the distribution of the number, size, and circulation of the identified vortices was studied. Proper orthogonal decomposition of the velocity fields revealed that Reynolds number has a strong influence on the mean circulation of vortices. The present results show that the axial location where vortices first appear and the number of vortices close to the nozzle exit (X/D<5) are dependent on the Reynolds number.  相似文献   

16.
根据相似原理,模拟漩流中间包及漩流室内钢液的流动,研究了不同漩流室直径、高度对夹杂物在漩流室内向心聚集上浮的影响,验证漩流室对夹杂物的去除效果。结果表明,漩流室的引入有利于夹杂物的上浮去除,夹杂物的上浮率平均由原来的92.35%提高到97%以上。  相似文献   

17.
利用GAMBIT建立了轴向计算长度2 200 mm和径向计算长度800 mm的超音速氧枪的数学模型,并采用FLUENT软件对氧枪射流特性进行数值仿真研究。分析了单孔氧枪超音速射流特性,以及操作压力(0.6~1.0 MPa)和环境温度(298~1 873 K)对流动特性的影响。结果表明,入口滞止压力在设计压力±25%内对射流轴向衰减及径向扩展影响不大,其与射流的超音速区长度呈二次曲线关系变化,随环境温度升高,射流轴向衰减变缓慢,核心区长度增加,超音速区长度和环境温度呈线性关系,环境温度对射流径向影响很小。  相似文献   

18.
19.
采用数值计算方法对比研究了直通式、4分径向以及新型4分切向水口对大方坯连铸结晶器内钢水流动与凝固行为的影响.结果表明,当前常用的直通式水口对坯壳无冲击,利于坯壳均匀生长,但钢水冲击深度大,易在弯月面处形成死区,不利于大方坯内部及表面质量的提高;改用4分水口浇铸时,结晶器宽、窄面冲击区附近都会出现不同程度的坯壳厚度零增长...  相似文献   

20.
马樊  刘青  张江山  王超  孙建坤  李明 《钢铁》2022,57(10):101-109
 连铸二冷区铸坯表面温度通常高于900 ℃,此时喷淋液滴接触高温铸坯时不会湿润铸坯表面,仅在其上形成一层蒸汽膜,阻碍了液滴与铸坯表面接触传热。针对以上问题,以国内某钢厂连铸二冷区的扁平型水喷嘴为原型,建立了喷嘴射流仿真计算模型,并对所建模型进行了理论和实验室验证;采用数值模拟的方法研究了喷嘴自由射流区的流场分布,运用连铸喷嘴冷却检测系统测量获得了射流液滴粒径演变规律;结合数值模拟和实验室测定结果,定量分析了喷嘴在不同水流量下射流液滴冲击铸坯表面蒸汽膜深度的变化规律。结果表明,该喷嘴的最大射流速度在喷嘴出口处,射流在喷嘴出口附近出能维持较大的射流速度,且随着水量的增加,射流保持高射流速度的距离也增长;整体射流的轴向速度占比均在80%以上。当喷淋水量越大时,射流液滴粒径变得越小;随着距喷嘴出口距离的增加,射流中心处的液滴粒径逐渐增大并达到最大值;当水流量为9和12 L/min时,液滴粒径基本相同,这表明当水流量增加到一定值时,冷却水量的增加不影响液滴粒径分布。在不同水流量下,随着喷淋距离的增加,液滴穿透铸坯表面蒸汽膜深度呈先增大后略微减小的变化规律,在喷射距离为100~200 mm范围内时,液滴穿透深度最大,这表明喷射高度在该范围时,喷淋冷却效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号