首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formability and strength of friction-stir-welded aluminum sheets   总被引:4,自引:0,他引:4  
Friction stir welding was investigated as a viable process for joining thin aluminum sheets in order to manufacture tailored blanks. In the present study three alloys were tested: 5182-O, 5754-O, and 6022-T4. All three of these alloys are being used to fabricate stamped automotive parts. The gas tungsten arc welding process has been used to make aluminum-tailored welded blanks industrially, so results using this process were compared to FSW results. Blanks of the same gage of all three alloys were welded and then evaluated using tensile and formability testing. The 5xxx series alloys had similar tensile ductility and formability regardless of the welding process. However, the 6022-T4 sheets joined using friction stir welding had better formability than those joined using gas tungsten arc welding because friction stir welding caused less softening in the heat-affected zone.  相似文献   

2.
张坤  江海涛  孟强  唐荻  蔺宏涛 《工程科学学报》2018,40(12):1525-1532
针对熔化焊在焊接AA7B04铝合金时易在焊缝中出现孔洞等缺陷,且接头性能下降明显、焊后变形大,以及采用铆接等机械连接方式会增加连接件的重量等问题,采用集成了搅拌摩擦焊末端执行器的KUKA Titan机器人对2 mm厚AA7B04高强铝合金进行了焊接,在转速为800 r·min-1的条件下,研究了焊度对焊接过程中搅拌头3个方向的受力Fx、Fy和Fz的影响.研究发现,Fz受焊速的影响显著,随焊速的增加而降低.利用光学显微镜、透射电子显微镜、拉伸试验、三点弯曲试验和硬度测试等方法,研究了不同焊速下AA7B04铝合金接头的微观组织和力学性能.结果表明:当焊速为100 mm·min-1时,接头的抗拉强度最高为447 MPa,可达母材的80%,且所有接头的正弯和背弯180°均无裂纹;接头横截面的硬度分布呈W型,硬度最低点出现在热力影响区和焊核区的交界处,焊速不同会导致不同的焊接热循环,且随着焊速的增加接头的硬度随之增加;焊核区组织发生了动态再结晶,生成了细小的等轴晶粒,前进侧和后退侧热力影响区的晶粒均发生了明显的变形;前进侧热影响区析出η'相,后退侧热影响区因温度较高析出η'相和尺寸较大的η相.   相似文献   

3.
This investigation was undertaken to predict the tensile strength of friction stir welded pure copper. Response surface methodology based on a central composite rotatable design with four welding parameters, five levels, and 31 runs was used to conduct the experiments and to develop the mathematical regression model by means of Design-Expert software. Four welding parameters considered were tool profile design, rotational speed, welding speed, and axial force. Analysis of variance was applied to validate the predicted model. Confirmation experiments including microstructural characterization and conducted tensile tests showed that developed models are reasonably accurate. The results showed that the joints welded using the square and triangular tools had higher tensile strength compared to the joints welded using other tools. The increase in tool rotational speed, welding speed, and axial force resulted in increasing the tensile strength of the joints up to a maximum value. Also, the developed model showed that the optimum parameters to get a maximum of tensile strength were rotational speed, welding speed, and axial force of 942 rpm, 84 mm/min, and 1.62 kN, respectively.  相似文献   

4.
 Microstructure, tensile and impact toughness properties and fracture location of friction stir welded AISI 1018 mild steel are revealed in this paper. The 5 mm thick AISI 1018 mild steel plates were friction stir welded with tool rotational speed of 1000 rpm and welding speed of 50 mm/min with tungsten base alloy tool. Tensile strength of stir zone is higher (8%) when compared to the base metal. This may be due to the formation of finer grains in the weld nugget region under the stirring action of the rotating tool. The ductility and impact toughness of the joints are decreased compared to the base metal and this is due to the inclusion of tungsten particles in the weld region.  相似文献   

5.
New families of aluminum matrix composites (AMCs) have been developed over the last decade in search of superior properties. Aluminum reinforced with ZrB2 particles is one such family which has drawn the attention of researchers. Friction stir welding is a relatively new solid state welding which overcomes most of the defects associated with fusion welding of AMCs. An attempt has been made to friction stir weld AA6061/0?C10 wt% ZrB2 in situ composite and to develop an empirical relationship to predict the tensile strength of butt joints. Four factors, five levels central composite rotatable design was used to minimize the number of experiments. The factors considered are tool rotational speed, welding speed, axial force and weight percentage of ZrB2. The effect of these factors on tensile strength of the welded joints is analyzed using the developed empirical relationship. The predicted trends are discussed. It is observed that the factors independently influence the tensile strength over the entire range of parameters studied in this work.  相似文献   

6.
2519铝合金搅拌摩擦焊焊缝组织与性能   总被引:4,自引:0,他引:4  
2519是第三代新型高强装甲铝合金,开发与之配食的成熟焊接技术。特别是厚板焊接技术,是其实现工程应用的前提。本文采用搅拌摩擦焊工艺对2519合金厚板进行了实验研究,实现了25mm厚的2519铝合金焊接。并对焊缝组织进行了组织、力学性能、抗应力腐蚀性能测试,结果表明:抗拉强度达到300MPa以上,延伸率达到8—10%。  相似文献   

7.
Friction stir welding (FSW) was used to join 3003-H18 non-heat-treatable aluminum alloy plates by adding copper powder. The copper powder was first added to the gap (0.1 and 0.2 mm) between two plates and then the FSW was performed. The specimens were joined at various rotational speeds of 800, 1000, and 1200 rpm at traveling speeds of 70 and 100 mm/min. The effects of rotational speed, second pass of FSW, and direction of second pass also were studied on copper particle distribution and formation of Al-Cu intermetallic compounds in the stir zone. The second pass of FSW was carried out in two ways; in line with the first pass direction (2F) and in the reverse direction of the first pass (FB). The microstructure, mechanical properties, and formation of intermetallic compounds type were investigated. In high copper powder compaction into the gap, large clusters were formed in the stir zone, while fine clusters and sound copper particles distribution were obtained in low powder compaction. The copper particle distribution and amount of Al-Cu intermetallic compounds were increased in the stir zone with increasing the rotational speed and applying the second pass. Al2Cu and AlCu intermetallic phases were formed in the stir zone and consequently the hardness was significantly increased. The copper particles and in situ intermetallic compounds were symmetrically distributed in both advancing and retreating sides of weld zone after FB passes. Thus, the wider area was reinforced by the intermetallic compounds. Also, the tensile test specimens tend to fracture from the coarse copper aggregation at the low rotational speeds. At high rotational speeds, the fracture locations are placed in HAZ and TMAZ.  相似文献   

8.
The present work describes the effect of welding parameters on the tensile properties and fatigue behaviour of 2014-T6 aluminum alloy joints produced by friction stir welding (FSW). Characterization of the samples has been carried out by means of microstructure, microhardness, tensile properties and fatigue behaviors. The hardness in the softened weld region decreases with decreasing the welding speed. Irrespective of the tool rotation speeds, the best tensile and fatigue properties were obtained in the joints with the welding speed of 80 mm/min. The joint welded with a rotating speed of 1520 rpm at 80 mm/min has given a highest tensile and fatigue properties. The fatigue behaviors of the joints are almost consistent with the tensile properties, especially elongations. Higher ductility in FSW joints made the material less sensitive to fatigue. The location of tensile fractures of the joints is dependent on the welding parameters. On the other hand, the fatigue fracture locations change depending on the welding parameters and stress range. In addition, a considerable correlation could not be established in between heat indexes and mechanical properties of FSW 2014-T6 joints under the investigated welding parameters.  相似文献   

9.
Friction stir welding of AA6101-T6 and AA6351-T6 dissimilar Aluminium alloys has been carried out at constant welding speed using a tapered cylindrical threaded tool pin with varying rotational speed. Change in microstructure and hardness near heat affected zone, nugget zone, and Thermo mechanically affected zone have been examined. Tensile tests results showed that the minimum loss of yield strength and ultimate tensile strength with minimised microstructural distortion in the weld correspond to 1100 r.p.m of tool speed. Electron probe micro analysis with energy dispersive spectroscopy result shows that the breakdown of inter granular precipitate of Mg2Si is found to be equiaxed and it minimizes the heat affected zone, thus attributing to the increase of strength compared to welded joints of 900 and 1300 r.p.m tool speed. The mass% of Si decreases with increase in tool speed and forms finer Mg2Si precipitates that attributes to reduction in strength with fibrous fracture appearance.  相似文献   

10.
采用搅拌摩擦焊接方法对厚度为1.5mm的LF21薄板铝合金板在进行焊接试验,首次提出搅拌头旋转速度为5000r/min时的焊接工艺,实验结果表明:在焊接速度为70~105mm/min,压入量适中,并采用喷气冷却,可以获得较好的焊接接头,抗拉强度达到最大值111.530MPa。焊缝中存在3个组织变化区,其中焊核区内是细小均匀的等轴晶,焊缝两侧热机影响区组织存在较大差异,热影响区组织发生了回复、再结晶和粗化。  相似文献   

11.
Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.  相似文献   

12.
Friction stir welding (FSW), being an enabling solid-state joining technology, can be suitably applied for the assembly of lightweight magnesium (Mg) alloys. In this investigation, friction stir lap welded (FSLWed) joints of AZ31B-H24 Mg alloy were characterized in terms of the welding defects, microstructure, hardness, and fatigue properties at various combinations of tool rotational rates and welding speeds. It was observed that the hardness decreased from the base metal (BM) to the stir zone (SZ) across the heat-affected zone (HAZ) and thermomechanically affected zone (TMAZ). The lowest value of hardness appeared in the SZ. With increasing tool rotational rate or decreasing welding speed, the average hardness in the SZ decreased owing to increasing grain size, and a Hall–Petch-type relationship was established. Fatigue fracture of the lap welds always occurred at the interface between the SZ and TMAZ on the advancing side where a larger hooking defect was present (in comparison with the retreating side). The welding parameters had a significant influence on the hook height and the subsequent fatigue life. A relatively “cold” weld, conducted at a rotational rate of 1000 rpm and welding speed of 20 mm/s, gave rise to almost complete elimination of the hooking defect, thus considerably (over two orders of magnitude) improving the fatigue life. Fatigue crack propagation was basically characterized by the formation of fatigue striations concomitantly with secondary cracks.  相似文献   

13.
To achieve significant improvement in the shear strength of dissimilar joints between aluminum and mild steel sheets, four methods of friction stir multi-spot welding processes, were investigated. Initially, in all these methods, plasticized aluminum layer was deposited on the steel side by friction surfacing. Subsequently, the deposited aluminum was compacted by friction forming. After dressing, spot welding with different tool configurations was performed. Tool rotational speeds of 900, 1120, 1400 and 1800 rpm were used to analyze their effects on the weld nugget. Different mechanical and metallurgical characterizations were done on the welds thus made. The process with aluminum layer on grooved mild steel followed by friction stir multi-spot welding using concave tipped welding tool resulted in welds. These welds had better metallurgical bonding characteristics and higher shear strength, which at a rotational speed of 1120 rpm was more than twice that of the welds made with conventional friction stir spot welding.  相似文献   

14.
The effect of the conditions of friction stir welding (FSW) of 1570C aluminum alloy sheets on the structure and mechanical properties of the welded joints is studied. A recrystallized fine-grained structure with a grain size changing with the rate of welding tool rotation forms in a weld during FSW. As compared to the base metal, the yield strength of the weld metal decreases by 9–22% depending on the rate of welding tool rotation, and the ultimate tensile strength is almost independent of the FSW conditions and accounts for ~90% of the ultimate tensile strength of the base metal. The plasticity of the weld metal is >13% for all rates of welding tool rotation. The microstructure and mechanical properties of the weld zone are discussed.  相似文献   

15.
Fusion welding of dissimilar aluminum alloys is very challenging. In the present work, Al-Cu alloy AA2219-T87 was friction stir welded to Al-Mg alloy AA5083-H321. Weld microstructures, hardness, and tensile properties were evaluated in as-welded condition. Microstructural studies revealed that the nugget region was primarily composed of alloy 2219, which was placed on the advancing side. No significant mixing of the two base materials in the nugget region was observed. Hardness studies revealed that the lowest hardness in the weldment occurred in the heat-affected zone on alloy 5083 side, where tensile failure were observed to take place. Tensile tests indicated a joint efficiency of around 90%, which is substantially higher than what can be achieved with conventional fusion welding. Overall, the results show that satisfactory butt welds can be produced between AA2219-T87 and Al-Mg alloy AA5083-H321 sheets using friction stir welding.  相似文献   

16.
This study was aimed at characterizing the microstructure, texture and tensile properties of a friction stir welded AZ31B-H24 Mg alloy with varying tool rotational rates and welding speeds. Friction stir welding (FSW) resulted in the presence of recrystallized grains and the relevant drop in hardness in the stir zone (SZ). The base alloy contained a strong crystallographic texture with basal planes (0002) largely parallel to the rolling sheet surface and $ \langle {11\bar{2}0} \rangle $ directions aligned in the rolling direction (RD). After FSW the basal planes in the SZ were slightly tilted toward the TD determined from the sheet normal direction (or top surface) and also slightly inclined toward the RD determined from the transverse direction (or cross section) due to the intense shear plastic flow near the pin surface. The prismatic planes $ (10\bar{1}0) $ and pyramidal planes $ (10\bar{1}1) $ formed fiber textures. After FSW both the strength and ductility of the AZ31B-H24 Mg alloy decreased with a joint efficiency in-between about 75 and 82 pct due to the changes in both grain structure and texture, which also weakened the strain rate dependence of tensile properties. The welding speed and rotational rate exhibited a stronger effect on the YS than the UTS. Despite the lower ductility, strain-hardening exponent and hardening capacity, a higher YS was obtained at a higher welding speed and lower rotational rate mainly due to the smaller recrystallized grains in the SZ arising from the lower heat input.  相似文献   

17.
Friction stir welding undergoes a steep evolution in industrial applications since the invention in the early 1990s. Especially for aluminium alloys in sheet thicknesses over 2 mm a lot of applications are established, whereas a lack in knowledge about friction stir welding of thin sheets with sheet thickness less than 2 mm exists. This article deals with friction stir welding of thin sheet aluminium steel tailored hybrids and their formability. These investigations tend to close the gap of availability of friction stir welded blanks in the range of 1 mm sheet thickness and to offer new applications of this joining technology. For production of aluminium steel tailored hybrids AA5182 with a thickness of 1.2 mm and DC04 in 1.0 mm are used, the joining partners are friction stir welded in a lap joint. Different tool geometries and process parameters are performed to achieve the highest strength and elongation at fracture of the tailored hybrids. The influence of the stirring on the arrangement and distribution of both materials in the welding zone and its microstructure is analysed using light optical and scanning electron microscopy. In addition to tensile tests planar microhardness measurements help to detect the local changes of the mechanical properties in the characteristic zones of the weld seam. Tailored hybrids, which were friction stir welded with the best welding parameters in accordance to the mechanical properties of the weld seams, were used for deep drawing tests of friction stir welded thin sheet aluminium steel tailored hybrids. The maximum drawing ratio of these tailored hybrids coincides with the one of the parent material of AA5182.  相似文献   

18.
In the present study, friction welding of tube to tube plate using an external tool (FWTPET) was used to weld copper tubes with aluminum plates. Tubes were prepared with holes along the faying surfaces of tubes and cleaned before welding. The weld microstructure shows line of stir zone (SZ), a narrow thermo mechanically affected zone and heat affected zone (HAZ). The welded samples were found to have satisfactory joint strength and the XRD study showed the presence of AlCu intermetallic in the weld zone. The hardness survey revealed that there was a slight increase in hardness adjacent to the weld interface due to grain refinement. Better weld joints were achieved when the tool rotation speed and interference are 1500 rpm and 0.8 mm respectively. The present study confirms that a high quality copper tube to aluminium tube plate joint can be achieved by FWPET process.  相似文献   

19.
针对兵器工业用7A52铝合金,从焊接工艺参数、焊后无损检测,以及破坏性实验力学性能、弯曲性能、宏观检测、焊接接头显微硬度等方面进行试验研究。结果表明,7A52铝合金焊接性能良好,接头拉伸、弯曲性能较好,抗拉强度达到274.8MPa,接头硬度曲线分布表明强度最低区域为焊缝。  相似文献   

20.
超细晶材料综合性能优异,但组织热稳定性较差,焊接后接头组织容易发生异常长大,使其性能急剧下降。因此,合适的连接工艺对大尺寸超细晶结构件的应用具有重要工程意义。以超细晶铜、粗晶铝以及粗晶铜、粗晶铝作为结构母材,采用热输入量小的搅拌摩擦焊(FSW)工艺进行连接探索,系统观察了铜铝接头组织与性能。结果表明,超细晶铜与铝接头界面处元素互扩散能力较强,形成较多的Al4Cu9 金属间化合物;在焊接过程中,当搅拌头转速为1000 r/min,焊接速度为50 mm/min时,粗晶铜与铝接头硬度可达HV 211,超细晶铜与铝焊接接头可获得良好的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号