首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Crystal structures of human hexokinase I reveal identical binding sites for phosphate and the 6-phosphoryl group of glucose 6-phosphate in proximity to Gly87, Ser88, Thr232, and Ser415, a binding site for the pyranose moiety of glucose 6-phosphate in proximity to Asp84, Asp413, and Ser449, and a single salt link involving Arg801 between the N- and C-terminal halves. Purified wild-type and mutant enzymes (Asp84 --> Ala, Gly87 --> Tyr, Ser88 --> Ala, Thr232 --> Ala, Asp413 --> Ala, Ser415 --> Ala, Ser449 --> Ala, and Arg801 --> Ala) were studied by kinetics and circular dichroism spectroscopy. All eight mutant hexokinases have kcat and Km values for substrates similar to those of wild-type hexokinase I. Inhibition of wild-type enzyme by 1,5-anhydroglucitol 6-phosphate is consistent with a high affinity binding site (Ki = 50 microM) and a second, low affinity binding site (Kii = 0.7 mM). The mutations of Asp84, Gly87, and Thr232 listed above eliminate inhibition because of the low affinity site, but none of the eight mutations influence Ki of the high affinity site. Relief of 1,5-anhydroglucitol 6-phosphate inhibition by phosphate for Asp84 --> Ala, Ser88 --> Ala, Ser415 --> Ala, Ser449 --> Ala and Arg801 --> Ala mutant enzymes is substantially less than that of wild-type hexokinase and completely absent in the Gly87 --> Tyr and Thr232 --> Ala mutants. The results support several conclusions. (i) The phosphate regulatory site is at the N-terminal domain as identified in crystal structures. (ii) The glucose 6-phosphate binding site at the N-terminal domain is a low affinity site and not the high affinity site associated with potent product inhibition. (iii) Arg801 participates in the regulatory mechanism of hexokinase I.  相似文献   

2.
The structural transformation of fructose-1,6-bisphosphatase upon binding of the allosteric regulator AMP dramatically changes the interactions across the C1-C4 (C2-C3) subunit interface of the enzyme. Asn9, Met18, and Ser87 residues were modified by site-directed mutagenesis to probe the function of the interface residues in porcine liver fructose-1,6-bisphosphatase. The wild-type and mutant forms of the enzyme were purified to homogeneity and characterized by initial rate kinetics and circular dichroism (CD) spectrometry. No discernible alterations in structure were observed among the wild-type and Asn9Asp, Met18Ile, Met18Arg, and Ser87Ala mutant forms of the enzyme as measured by CD spectrometry. Kinetic analyses revealed 1.6- and 1.8-fold increases in kcat with Met18Arg and Asn9Asp, respectively. The K(m) for fructose 1,6-bisphosphate increased about 2-approximately 4-fold relative to that of the wild-type enzyme in the four mutants. A 50-fold lower Ka value for Mg2+ compared with that of the wild-type enzyme was obtained for Met18Ile with no alteration of the Ki for AMP. However, the replacement of Met18 with Arg caused a dramatic decrease in AMP affinity (20 000-fold) without a change in Mg2+ affinity. Increases of 6- and 2-fold in the Ki values for AMP were found with Asn9Asp and Ser87Ala, respectively. There was no difference in the cooperativity for AMP inhibition between the wild-type and the mutant forms of fructose-1,6-bisphosphatase. This study demonstrates that the mutation of residues in the C1-C4 (C2-C3) interface of fructose-1,6-bisphosphatase can significantly affect the affinity for Mg2+, which is presumably bound 30 A away. Moreover the mutations alternatively reduce AMP and Mg2+ affinities, and this finding may be associated with the destabilization of the corresponding allosteric states of the enzyme. The kinetics and structural modeling studies of the interface residues provide new insights into the conformational equilibrium of fructose-1,6-bisphosphatase.  相似文献   

3.
In MS2 assembly of phage particles results from an interaction between a coat protein dimer and a stem-loop of the RNA genome (the operator hairpin). Amino acid residues Thr45, which is universally conserved among the small RNA phages, and Thr59 are part of the specific RNA binding pocket and interact directly with the RNA; the former through a hydrogen bond, the latter through hydrophobic contacts. The crystal structures of MS2 protein capsids formed by mutants Thr45Ala and Thr59Ser, both with and without the 19 nt wild-type operator hairpin bound, are reported here. The RNA hairpin binds to these mutants in a similar way to its binding to wild-type protein. In a companion paper both mutants are shown to be deficient in RNA binding in an in vivo assay, but in vitro the equilibrium dissociation constant is significantly higher than wild-type for the Thr45Ala mutant. The change in binding affinity of the Thr45Ala mutant is probably a direct consequence of removal of direct hydrogen bonds between the protein and the RNA. The properties of the Thr59Ser mutant are more difficult to explain, but are consistent with a loss of non-polar contact.  相似文献   

4.
Previous kinetic studies on human glutathione transferase P1-1 have indicated that the motions of an irregular alpha-helix (helix 2) lining the glutathione (GSH) binding site are viscosity dependent and may modulate the affinity of GSH binding. The effect of single amino acid residue substitutions (Gly to Ala) in this region is investigated here by site-directed mutagenesis. Three mutants (Gly41Ala, Gly50Ala and Gly41Ala/Gly50Ala) were overexpressed in Escherichia coli, purified, and characterized by kinetic, structural, and spectroscopic studies. All these mutant enzymes show kcat values similar to that of the wild-type enzyme, while the [S]0.5 for GSH increases about eight-fold in the Gly41Ala mutant and more than 100-fold in the Gly41Ala/Gly50Ala double mutant. This change in affinity towards GSH is accompanied by an induced positive cooperativity as reflected by Hill coefficients of 1.4 (Gly41Ala) and 1.7 (Gly41Ala/Gly50Ala) upon substrate binding. Taken together, these data suggest that the region around helix 2 is markedly altered leading to the observed intersubunit communication. Molecular modeling of the Gly41Ala/Gly50Ala mutant and of the inactive oxidized form of the native enzyme provides a structural explanation of our results.  相似文献   

5.
The human emopamil binding protein (hEBP) exhibits sterol Delta8-Delta7 isomerase activity (EC 5.3.3.5) upon heterologous expression in a sterol Delta8-Delta7 isomerization-deficient erg2-3 yeast strain. Ala scanning mutagenesis was used to identify residues in the four putative transmembrane alpha-helices of hEBP that are required for catalytic activity. Isomerization was assayed in vivo by spectrophotometric quantification of Delta5,7-sterols. Out of 64 Ala mutants of hEBP only H77A-, E81A-, E123A-, T126A-, N194A-, and W197A-expressing yeast strains contained 10% or less of wild-type (wt) Delta5,7-sterols. All substitutions of these six residues with functionally or structurally similar amino acid residues failed to fully restore catalytic activity. Mutants E81D, T126S, N194Q, and W197F, but not H77N and E123D, still bound the enzyme inhibitor 3H-ifenprodil. Changed equilibrium and kinetic binding properties of the mutant enzymes confirmed our previous suggestion that residues required for catalytic activity are also involved in inhibitor binding [Moebius et al. (1996) Biochemistry 35, 16871-16878]. His77, Glu81, Glu123, Thr126, Asn194, and Trp197 are localized in the cytoplasmic halves of the transmembrane segments 2-4 and are proposed to line the catalytic cleft. Ala mutants of Trp102, Tyr105, Asp109, Arg111, and Tyr112 in a conserved cytoplasmic domain (WKEYXKGDSRY) between transmembrane segments 2 and 3 contained less than 10% of wt Delta5,7-sterols, implying that this region also could be functionally important. The in vivo complementation of enzyme-deficient yeast strains with mutated cDNAs is a simple and sensitive method to rapidly analyze the functional consequences of mutations in sterol modifying enzymes.  相似文献   

6.
The interaction of ATP with the active site of hexokinase is unknown since the crystal structure of the hexokinase-ATP complex is unavailable. It was found that the ATP binding site of brain hexokinase is homologous to that of actin, heat shock protein hsc70, and glycerol kinase. On the basis of these similarities, the ATP molecule was positioned in the catalytic domain of human brain hexokinase, which was modeled from the X-ray structure of yeast hexokinase. Site-directed mutagenesis was performed to test the function of residues presumably involved in interaction with the tripolyphosphoryl moiety of ATP. Asp532, which is though to be involved in binding the Mg2+ ion of the MgATP2- complex, was mutated to Lys and Glu. The kcat values decreased 1000- and 200-fold, respectively, for the two mutants. Another residue, Thr680 was proposed to interact with the gamma-phosphoryl group of ATP through hydrogen bonds and was mutated to Val and Ser. The kcat value of the Thr680Val mutant decreased 2000-fold, whereas the kcat value of the Thr680Ser decreased only 2.5-fold, implying the importance of the hydroxyl group. The Km and dissociation constant values for either ATP or glucose of all the above mutants showed little or no change relative to the wild-type enzyme. The Ki values for the glucose 6-phosphate analogue 1,5-anhydroglucitol 6-phosphate, were the same as that of the wild-type enzyme, and the inhibition was reversed by inorganic phosphate (Pi) for all four mutants. The circular dichroism spectra of the mutants were the same as that of the wild-type enzyme. The results from the site-directed mutagenesis demonstrate that the presumed interactions of investigated residues with ATP are important for the stabilization of the transition state.  相似文献   

7.
8.
The significance of subunit interface residues Arg49 and Lys50 in the function of porcine liver fructose-1,6-bisphosphatase was explored by site-directed mutagenesis, initial rate kinetics, and circular dichroism spectroscopy. The Lys50 --> Met mutant had kinetic properties similar to the wild-type enzyme but was more thermostable. Mutants Arg49 --> Leu, Arg49 --> Asp, Arg49 --> Cys were less thermostable than the wild-type enzyme yet exhibited wild-type values for kcat and Km. The Ki for the competitive inhibitor fructose 2,6-bisphosphate increased 3- and 5-fold in Arg49 --> Leu and Arg49 --> Asp, respectively. The Ka for Mg2+ increased 4-8-fold for the Arg49 mutants, with no alteration in the cooperativity of Mg2+ binding. Position 49 mutants had 4-10-fold lower AMP affinity. Most significantly, the mechanism of AMP inhibition with respect to fructose 1,6-bisphosphate changed from noncompetitive (wild-type enzyme) to competitive (Arg49 --> Leu and Arg49 --> Asp mutants) and to uncompetitive (Arg49 --> Cys mutant). In addition, AMP cooperativity was absent in the Arg49 mutants. The R and T-state circular dichroism spectra of the position 49 mutants were identical and superimposable on only the R-state spectrum of the wild-type enzyme. Changes from noncompetitive to competitive inhibition by AMP can be accommodated within the framework of a steady-state Random Bi Bi mechanism. The appearance of uncompetitive inhibition, however, suggests that a more complex mechanism may be necessary to account for the kinetic properties of the enzyme.  相似文献   

9.
The Escherichia coli purine repressor, PurR, exists in an equilibrium between open and closed conformations. Binding of a corepressor, hypoxanthine or guanine, shifts the allosteric equilibrium in favor of the closed conformation and increases the operator DNA binding affinity by 40-fold compared to aporepressor. Glu70 and Trp147 PurR mutations were isolated which perturb the allosteric equilibrium. Three lines of evidence indicate that the allosteric equilibrium of E70A and W147A aporepressors was shifted toward the closed conformation. First, compared to wild-type PurR, these mutant repressors had a 10-30-fold higher corepressor binding affinity. Second, the mutant aporepressors bound to operator DNA with an affinity that is characteristic of the wild-type PurR holorepressor. Third, binding of guanine to wild-type PurR resulted in a near-UV circular dichroism spectral change at 297-305 nm that is attributed to the closed conformation. The circular dichroism spectrum of the E70A aporepressor at 297-305 nm was that expected for the closed conformation, and it was not appreciably altered by corepressor binding. Mutational analysis was used to identify an Arg115-Ser46' interdomain intersubunit hydrogen bond that is necessary for transmitting the allosteric transition in the corepressor binding domain to the DNA binding domain. R115A and S46G PurR mutants were defective in DNA binding in vitro and repressor function in vivo although corepressor binding was identical to the wild type. These results establish that the hydrogen bond between the side chain NH2 of Arg115 and the main chain CO of Ser46' plays a critical role in interdomain signaling.  相似文献   

10.
The flavin-containing enzyme dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate (DHO) to orotate, the first aromatic intermediate in pyrimidine biosynthesis. The first structure of a DHOD, the A form of the enzyme from Lactococcus lactis, has recently become known, and some conserved residues were suggested to have a role in the active site [Rowland et al. (1997) Structure 2, 239-252]. In particular, Cys 130 was hypothesized to work as a base, which activates dihydroorotate (DHO) for hydride transfer. By chemical modification and site-directed mutagenesis we have obtained results consistent with this proposal. Cys 130 was susceptible to alkylating reagents, and mutants of Cys 130 (C130A and C130S) showed hardly detectable enzyme activity at pH 8.0, while at pH 10 the C130S mutant enzyme had approximately 1% of wild-type activity. Mutants of Lys 43, Asn 132, and Lys 164 were also constructed. Exchange of Lys 43 to Ala or Glu (K43A and K43E) and of Asn 132 to Ala (N132A) affected both catalysis and substrate binding. Expressed as kcat/KM for DHO, the deterioration of these three mutant enzymes was 10(3)-10(4)-fold. Flavin spectra of the mutant enzymes were not, like the wild-type enzyme, bleached by DHO in stopped-flow experiments, showing that they were deficient with respect to the first half-reaction, namely reduction of FMN by DHO, which was not rate limiting for the wild-type enzyme. The binding interaction between flavin and the reaction product, orotate, could be monitored by a red shift of the flavin absorbance in the wild-type enzyme. The C130A, C130S, and N132A mutant enzymes displayed similar capacity to bind orotate. In contrast, orotate did not change the absorption spectra of the K43 mutant enzymes, although it did inhibit their activity. All of the mutant enzymes, except K164A, contained normal levels of flavin. The results are discussed in relation to the structures of DHODA and other flavoenzymes. The possible acid-base chemistry of Cys 130 is compared to previous work on mammalian dihydropyrimidine dehydrogenases, flavoenzymes, which catalyze the reversed reaction, namely the reduction of pyrimidine bases.  相似文献   

11.
We analyzed the role played by the conserved Gly154, a constituent of the P1 substrate-binding pocket of Bacillus subtilis subtilisin E, in the catalytic properties of the protease. Using an Escherichia coli expression system, the termination codon at position 154 in subtilisin E was first introduced to abolish the catalytic activity through truncation of the C-terminus from amino acid residues 154-275. We then attempted to obtain revertants with substitutions of various amino acids at position 154 by the polymerase chain reaction using a mixture of oligonucleotides. In addition to the Gly residue (wild-type), six amino acid substitutions (Ala, Arg, Leu, Phe, Pro and Thr) gave caseinolytic activity. When assayed with synthetic peptide substrates, most of the revertants showed a considerable decrease in specific activity and a P1 specificity similar to that of the wild-type enzyme. An Ala154 mutant purified from the periplasmic space in E. coli, however, resulted in an up to 2.3-fold preference for Val rather than Pro as a P2 substrate relative to the wild-type. Further, a significant 2-10-fold increase in the catalytic efficiency occurred in the Gly127Ala plus Gly154Ala combination variant, relative to the single Gly127Ala variant, without any change in the restricted specificity. The kinetic data and molecular modeling analysis demonstrate the important role of position 154 in the catalytic efficiency as well as in the substrate specificity of subtilisin E.  相似文献   

12.
Mutant adenylosuccinate lyases of Bacillus subtilis were prepared by site-directed mutagenesis with replacements for His141, previously identified by affinity labeling as being in the active site [Lee, T. T., Worby, C., Dixon, J. E., and Colman, R. F. (1997) J. Biol. Chem. 272, 458-465]. Four substitutions (A, L, E, Q) yield mutant enzyme with no detectable catalytic activity, while the H141R mutant is about 10(-)5 as active as the wild-type enzyme. Kinetic studies show, for the H141R enzyme, a Km that is only 3 times that of the wild-type enzyme. Minimal activity was also observed for mutant enzymes with replacements for His68 [Lee, T. T., Worby, C., Bao, Z. -Q., Dixon, J. E., and Colman, R. F. (1998) Biochemistry 37, 8481-8489]. Measurement of the reversible binding of radioactive adenylosuccinate by inactive mutant enzymes with substitutions at either position 68 or 141 shows that their affinities for substrate are decreased by only 10-40-fold. These results suggest that His141, like His68, plays an important role in catalysis, but not in substrate binding. Evidence is consistent with the hypothesis that His141 and His68 function, respectively, as the catalytic base and acid. Circular dichroism spectroscopy and gel filtration chromatography conducted on wild-type and all His141 and His68 mutants reveal that none of the mutant enzymes exhibits major structural changes and that all the enzymes are tetramers. Mixing inactive His141 with inactive His68 mutant enzymes leads to striking increases in catalytic activity. This complementation of mutant enzymes indicates that His141 and His68 come from different subunits to form the active site. A tetrameric structure of adenylosuccinate lyase was constructed by homology modeling based on the known structures in the fumarase superfamily, including argininosuccinate lyase, delta-crystallin, fumarase, and aspartase. The model suggests that each active site is constituted by residues from three subunits, and that His141 and His68 come from two different subunits.  相似文献   

13.
Platelet-activating factor (PAF) is a potent phospholipid mediator that produces a wide range of biological responses. The PAF receptor is a member of the seven-transmembrane GTP-binding regulatory protein-coupled receptor superfamily. This receptor binds PAF with high affinity and couples to multiple signaling pathways, leading to physiological responses that can be inhibited by various structurally distinct PAF antagonists. We have used site-directed mutagenesis and functional expression studies to examine the role of the Phe97 and Phe98 residues located in the third transmembrane helix and Asn285 and Asp289 of the seventh transmembrane helix in ligand binding and activation of the human PAF receptor in transiently transfected COS-7 cells. The double mutant FFGG (Phe97 and Phe98 mutated into Gly residues) showed a 3-4-fold decrease in affinity for PAF, but not for the specific antagonist WEB2086, when compared with the wild-type (WT) receptor. The FFGG mutant receptor, however, displayed normal agonist activation, suggesting that these two adjacent Phe residues maintain the native PAF receptor conformation rather than interacting with the ligand. On the other hand, substitution of Ala for Asp289 increased the receptor affinity for PAF but abolished PAF-dependent inositol phosphate accumulation; it did not affect WEB2086 binding. Substitution of Asn for Asp289, however, resulted in a mutant receptor with normal binding and activation characteristics. When Asn285 was mutated to Ala, the resulting receptor was undistinguishable from the WT receptor. Surprisingly, substitution of Ile for Asn285 led to a loss of ligand binding despite normal cell surface expression levels of this mutant, as verified by flow cytometric analysis. Our data suggest that residues 285 and 289 are determinant in the structure and activation of the PAF receptor but not in direct ligand binding, as had been recently proposed in a PAF receptor molecular model.  相似文献   

14.
We have expressed and characterized a mutant of Xenopus laevis Cu,Zn superoxide dismutase in which four highly conserved charged residues belonging to the electrostatic loop have been replaced by neutral side chains: Lys120 --> Leu, Asp130 --> Gln, Glu131 --> Gln, and Lys134 --> Thr. At low ionic strength, the mutant enzyme is one of the fastest superoxide dismutases ever assayed (k = 6.7 x 10(9) M(-1) s(-1), at pH 7 and mu = 0.02 M). Brownian dynamics simulations give rise to identical enzyme-substrate association rates for both wild-type and mutant enzymes, ruling out the possibility that enhancement of the activity is due to pure electrostatic factors. Comparative analysis of the experimental catalytic rate of the quadruple and single mutants reveals the nonadditivity of the mutation effects, indicating that the hyperefficiency of the mutant is due to a decrease of the energy barrier and/or to an alternative pathway for the diffusion of superoxide within the active site channel. At physiological ionic strength the catalytic rate of the mutant at neutral pH is similar to that of the wild-type enzyme as it is to the catalytic rate pH dependence. Moreover, mutation effects are additive. These results show that, at physiological salt conditions, electrostatic loop charged residues do not influence the diffusion pathway of the substrate and, if concomitantly neutralized, are not essential for high catalytic efficiency of the enzyme, pointing out the role of the metal cluster and of the invariant Arg141 in determining the local electrostatic forces facilitating the diffusion of the substrate towards the active site.  相似文献   

15.
X-ray crystallography predicts hydrogen-bonding interactions between the side chains of Thr198 and two other amino acid residues, Glu194 (adjacent to the catalytic His195) and Ser318 (on the alpha-H helix which rearranges on substrate binding). In order to investigate the contribution of this conserved amino acid residue, Thr198, two mutants of Bacillus stearothermophilus lactate dehydrogenase were created (Val198 and Ile198). The steady-state kinetic parameters for both mutant enzymes were very similar with increased substrate Km and reduced kcat when compared with the wild-type enzyme. The mutation Val198 allowed non-productive binding of pyruvate to the unprotonated form of His195. Steady-state kinetic parameters determined for the Val198 mutant enzyme in high solvent viscosity suggested both an altered rate-limiting step in catalysis and implicated Thr198 in allosteric activation by the effector fructose 1,6-bisphosphate (Fru1,6P2). A shift in the Fru1,6P2 activation constant for the Val198 mutant enzyme suggested that Thr198 stabilises the catalytically competent (Fru1,6P2-activated) form of the enzyme by 6.6 kJ/mol. However, Thr198 was not important for maintaining the thermal stability of the Fru1,6P2-activated form. Equilibrium unfolding in guanidinium chloride indicated that Thr198 contributes 17.2 kJ/mol subunits towards the tertiary structural stability. The results emphasise the importance of the side chain-hydroxyl group of Thr198 which is required for (a) productive substrate binding, (b) allosteric activation and (c) protein conformational stability. The characteristics of the B. stearothermophilus lactate dehydrogenase mutations reported here were significantly different from those of the same mutations made in the corresponding position of the analogous enzyme Thermus flavus malate dehydrogenase [Nishiyama, M., Shimada, K., Horinouchi, S., & Beppu, T. (1991) J. Biol. Chem. 266, 14294-14299].  相似文献   

16.
Based on structural comparison with other biogenic amine receptors and the histamine H2 receptor, it has been suggested that in the human histamine H1 receptor, Asp107, Thr194, and Asn198 are the residues involved in binding of histamine. We therefore used site-directed mutagenesis to investigate the roles of these three amino acid residues. Asp107 was essential for both agonist and antagonist binding. Asn198 was necessary for agonist but not for antagonist binding. Thr194 was not important for either type of binding. A good correlation was found between agonist binding and receptor activation for all the wild-type and mutant receptors. The results show that the histamine H1 receptor recognizes and is activated by histamine through the interactions of Asp107 and the amino group, and Asn198 and the imidazole ring.  相似文献   

17.
To investigate the role in catalysis and/or substrate binding of the Walker motif residues of rat testis fructose 6-phosphate, 2-kinase:fructose-2,6-bisphosphatase (Fru 6-P,2-kinase:Fru-2,6-Pase), we have constructed and characterized mutant enzymes of Asp-128, Thr-52, Asn-73, Thr-130, and Tyr-197. Replacement of Asp-128 by Ala, Asn, and Ser resulted in a small decrease in Vmax and a significant increase in Km values for both substrates. These mutants exhibited similar pH activity profiles as that of the wild type enzyme. Mutation of Thr-52 to Ala resulted in an enzyme with an infinitely high Km for both substrates and an 800-fold decreased Vmax. Substitution of Asn-73 with Ala or Asp caused a 100- and 600-fold increase, respectively in KFru 6-P with only a small increase in KATP and small changes in Vmax. Mutation of Thr-130 caused small changes in the kinetic properties. Replacement of Tyr-197 with Ser resulted in an enzyme with severely decreased binding of Fru 6-P with 3-fold decreased Vmax. A fluorescent analog of ATP, 2'(3')-O-(N-methylanthraniloyl)ATP (mant-ATP) served as a substrate with Km = 0.64 microM, and Vmax = 25 milliunits/mg and was a competitive inhibitor with respect to ATP. When mant-ATP bound to the enzyme, fluorescence intensity at 440 nm increased. mant-ATP binding of the wild type and the mutant enzymes were compared using the fluorometric method. The Kd values of the T52A and D128N enzymes were infinitely high and could not be measured, while those of the other mutant enzymes increased slightly. These results provide evidence that those amino acids are involved in substrate binding, and they are consistent with the crystallographic data. The results also suggest that Asp-128 does not serve as a nucleophile in catalysis, and since there are no other potential nucleophiles in the active site, we hypothesize that the Fru 6-P,2-kinase reaction is mediated via a transition state stabilization mechanism.  相似文献   

18.
The crystal structure of dimeric bacterial D-amino acid transaminase shows that the indole rings of the two Trp-139 side chains face each other in the subunit interface about 10 angstroms from the coenzyme, pyridoxal 5'-phosphate. To determine whether it has a role in the catalytic efficiency of the enzyme or interacts with the coenzyme, Trp-139 has been substituted by several different types of amino acids, and the properties of these recombinant mutant enzymes have been compared to the wild-type enzyme. In the native wild-type holoenzyme, the fluorescence of one of the three Trp residues per monomer is almost completely quenched, probably due to its interaction with PLP since in the native wild-type apoenzyme devoid of PLP, tryptophan fluorescence is not quenched. Upon reconstitution of this apoenzyme with PLP, the tryptophan fluorescence is quenched to about the same extent as it is in the native wild-type enzyme. The site of fluorescence quenching is Trp-139 since the W139F mutant in which Trp-139 is replaced by Phe has about the same amount of fluorescence as the wild-type enzyme. The circular dichroism spectra of the holo and the apo forms of both the wild-type and the W139F enzymes in the far-ultraviolet show about the same degree of ellipticity, consistent with the absence of extensive global changes in protein structure. Furthermore, comparison of the circular dichroism spectrum of the W139F enzyme at 280 nm with the corresponding spectral region of the wild-type enzyme suggests a restricted microenvironment for Trp-139 in the latter enzyme. The functional importance of Trp-139 is also demonstrated by the finding that its replacement by Phe, His, Pro, or Ala gives mutant enzymes that are optimally active at temperatures below that of the wild-type enzyme and undergo the E-PLP --> E-PMP transition as a function of D-Ala concentration with reduced efficiency. The results suggest that a fully functional dimeric interface with the two juxtaposed indole rings of Trp-139 is important for optimal catalytic function and maximum thermostability of the enzyme and, furthermore, that there might be energy transfer between Trp-139 and coenzyme PLP.  相似文献   

19.
Recombinant wild-type human IGF-1 and a C-region mutant in which residues 28-37 have been replaced by a 4-glycine bridge (4-Gly IGF-1) were secreted and purified from yeast. An IGF-1 analogue in which residues 29-41 of the C-region have been deleted (mini IGF-1) was created by site-directed mutagenesis and also expressed. All three proteins adopted the insulin-fold as determined by circular dichroism. The significantly raised expression levels of mini IGF-1 allowed the recording of two-dimensional NMR spectra. The affinity of 4-Gly IGF-1 for the IGF-1 receptor was approximately 100-fold lower than that of wild-type IGF-1 and the affinity for the insulin receptor was approximately 10-fold lower. Mini IGF-1 showed no affinity for either receptor. Not only does the C-region of IGF-1 contribute directly to the free energy of binding to the IGF-1 receptor, but also the absence of flexibility in this region eliminates binding altogether. As postulated for the binding of insulin to its own receptor, it is proposed that binding of IGF-1 to the IGF-1 receptor also involves a conformational change in which the C-terminal B-region residues detach from the body of the molecule to expose the underlying A-region residues.  相似文献   

20.
DT-diaphorase (EC 1.6.99.2), also referred to as NAD(P)H:(quinone-acceptor) oxidoreductase, is involved in the reductive activation process of several cytotoxic antitumor quinones and nitrobenzenes. It has been observed in our and other laboratories that the rat enzyme is significantly more effective in activating these drugs than the human and mouse enzymes. These results indicate that the available cytotoxic drugs are better substrates for the rat enzyme and are not the most ideal prodrugs for activation by DT-diaphorase in human tumors. In this study, using site-directed mutagenesis to replace residues in the rat enzyme with the human sequences and residues in the human enzyme with the rat sequences, we have found that residue 104 (Tyr in the rat enzyme and Gln in the human and mouse enzymes) is an important residue responsible for the catalytic differences between the rat and the human (and mouse) enzymes. With an exchange of a single amino acid, the rat mutant Y104Q behaved like the wild-type human enzyme, and the human mutant Q104Y behaved like the wild-type rat enzyme in their ability to reductively activate the cytotoxic drug CB 1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide). The study also confirms the conclusion of the x-ray structural analysis of rat enzyme that residue 130 (Thr in the rat enzyme and Ala in the human and mouse enzymes) is positioned near the binding region of the nicotinamide portion of NAD(P)H. This structural information is very important for designing suitable drugs and approaches for human cancer chemotherapy mediated by DT-diaphorase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号