首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Taxol-induced polymerization of tubulin into stable microtubules and cell cycle metaphase arrest have been demonstrated to result in internucleosomal DNA fragmentation and morphological features of apoptosis in human leukemia cells. Recent studies have also shown that Taxol-induced apoptosis, but not Taxol-induced microtubular bundling or mitotic arrest, is significantly inhibited in cells that overexpress the bcl-2 gene product p26BCL-2. In the present studies we examined the effects of several modulators of activities of protein kinases on Taxol-induced DNA fragmentation and apoptosis in human pre-B leukemia 697 cells transfected with the cDNA of the bcl-2 gene and expressing high intracellular levels of p26BCL-2 (697/BCL-2 cells). Treatment with 0.1-1.0 microM MTaxol for 24 h produced prolonged mitotic arrest of control 697/neo cells, which had been transfected with the neomycin resistance gene. This resulted in apoptosis-associated large DNA fragments ranging between 5 and 200 kb and internucleosomal DNA fragmentation. Cotreatment with the phorbol ester phorbol dibutyrate (PdBU) significantly reduced Taxol-induced internucleosomal and large DNA fragmentation and inhibited apoptosis of 697/neo cells. In contrast, a combined exposure to Taxol and staurosporine (ST; 5 or 50 ng/ml), a potent inhibitor of protein kinase C and other kinases, significantly increased DNA fragmentation and apoptosis of 697/neo cells. Additionally, in 697/BCL-2 cells, ST partially overcame the suppressive effects of high p26BCL-2 levels on Taxol-induced apoptosis. Cotreatment with the tyrosine kinase inhibitor Genistein (30 microM) markedly inhibited Taxol-induced DNA fragmentation and apoptosis of 697/neo cells. However, it is noteworthy that the modulations of Taxol-induced DNA fragmentation and apoptosis by PdBU, ST, and Genistein occurred without significant effects on Taxol-mediated mitotic arrest of 697/neo cells. These agents also did not affect intracellular p26BCL-2 levels in 697/neo or 697/BCL-2 cells. These findings indicate that Taxol-induced apoptosis can be modulated by agents that affect the activities of protein kinases, and these effects are not mediated by modulations of Taxol-induced mitotic arrest or by alterations of intracellular p26BCL-2 levels.  相似文献   

2.
Okadaic acid (OA) is a serine/threonine protein phosphatase inhibitor and has been shown to induce apoptosis in a number of different tumor cell lines, including human breast carcinoma (HBC) cells. The molecular basis of OA-induced apoptosis remains to be investigated. Here, we demonstrate that the OA concentration that inhibits only protein phosphatase 1 and 2A was sufficient to induce apoptosis in HBC cells. In MCF-7 cells, the OA-induced apoptosis was coupled with the overexpression of endogenous p53, p21Waf1/Cip1, and Bax proteins, whereas the Rb protein levels were decreased. OA also induced apoptosis and concomitantly enhanced the p21Waf1/Cip1 and Bex levels in human papilloma virus protein E6-transfected variants of MCF-7 cells, in which p53 function had been disrupted. OA, by contrast, had no effect on the levels or the subcellular localization of Gadd45 and Bcl2 proteins in either wild-type of E6-transfected MCF-7 cells. Bcl-xL, Bcl-xS, and Bak levels were also unchanged after OA treatment in both cell types. OA-induced apoptosis and its effect on the expression of the above molecular markers occurred in the absence of any detectable changes in the cell cycle phase distribution. On the basis of our findings, we conclude the following: (a) OA-induced apoptosis in HBC cells occurs independently of cell cycle arrest; (b) the wild-type p53 function is not an absolute prerequisite for OA-induced cell death; and (c) OA-induced apoptosis is associated with up-regulation of endogenous p21Waf1/Cip1 and Bax protein levels.  相似文献   

3.
Previous reports have demonstrated that a variety of anticancer drugs, e.g., 1-beta-D-arabinofuranosylcytosine (ara-C), mitoxantrone, etoposide, camptothecin, and cisplatin, induce the expression of c-jun oncogene in leukemic cells prior to producing internucleosomal DNA fragmentation and the morphological features of apoptosis. This has led to the impression that the induction of c-jun expression may be directly involved in the molecular signaling of the final common pathway of programmed cell death or apoptosis. In the present study, we examined the role of c-jun expression in three different settings of anticancer drug-induced apoptosis in human leukemic cells. First, exposure of human myeloid leukemia HL-60 cells to high-dose ara-C for 4 h produced internucleosomal DNA fragmentation preceded by c-jun induction. However, pretreatment of HL-60 cells with staurosporine, a protein kinase C inhibitor, repressed c-jun yet enhanced DNA fragmentation and apoptosis due to ara-C. Second, in human pre-B leukemia 697/BCL-2 cells which are transfected with the cDNA of the bcl-2 oncogene and overexpress p26BCL-2, although ara-C or mitoxantrone treatment caused greater c-jun induction than in the 697/neo cells, significantly reduced endonucleolytic DNA fragmentation and apoptosis was observed in 697/BCL-2 cells. Finally, taxol-induced internucleosomal DNA fragmentation and morphological features of apoptosis in HL-60 cells were not associated with the induction of c-jun expression. These lines of evidence indicate that the induction of c-jun expression may not have a direct role in the molecular signaling of anticancer drug-induced apoptosis, and that the anticancer drug-induced apoptosis can occur by a mechanism that does not involve the induction of c-jun expression.  相似文献   

4.
We investigated the role of p53 and of the Bcl-2 family proteins in the apoptotic response of a panel of testicular tumour cell lines (NT2, NCCIT, S2 and 2102 EP). The p53 gene status and the capacity of the p53 protein to transactivate the p21/WAF/CIP gene were determined, and we examined the correlation between p53 status and the susceptibility to cisplatin-induced apoptosis. In contrast to wild-type p53-containing NT2 and 2102 EP cells, NCCIT (mutant p53) and S2 (no p53 protein) cells were shown to be p53-transactivation defective. However, NCCIT and S2 cells with non-functional p53 were readily triggered into apoptosis by cisplatin, whereas p53-transactivation competent 2102 EP cells failed to undergo cisplatin-induced apoptosis. The defective apoptotic pathway in 2102 EP cells was reflected by a 4-fold decreased sensitivity to cisplatin in the MTT assay. We further demonstrated that the p53-independent differential cisplatin sensitivity among the testicular germ cell tumour (TGCT) cell lines was not due to differences in cellular cisplatin accumulation or DNA platination. The pattern of endogenous expression levels of Bax, Bcl-2, Bcl-x and Bak, which was not modulated by cisplatin treatment, demonstrated that these Bcl-2 family proteins are not involved in drug-induced apoptosis in the TGCT cell lines. Our results suggest a lack of correlation between cisplatin-induced apoptosis, p53 status and expression of Bcl-2 family proteins in our panel of TGCT cell lines. We conclude that the cisplatin-induced apoptotic pathway in TGCT cell lines might be p53-independent and is probably not associated with differences in the Bcl-2/Bax rheostat.  相似文献   

5.
We examined the sensitivity for cisplatin-induced apoptosis in a panel of four testicular germ cell tumour (TGCT) cell lines and monitored the cellular expression of the apoptosis-related proteins p53, Bcl-2 and Bax. Three of four TGCT cell lines (NT2, NCCIT and S2) were hypersensitive for cisplatin-induced apoptosis, while the TGCT cell line 2102 EP appeared to be resistant for cisplatin-induced apoptosis, even at relatively high drug concentrations (12.5 microM). For all four cell lines, the induction of apoptosis by cisplatin correlated with drug sensitivity in the MTT assay. The differences in chemosensitivity and induction of apoptosis could not be attributed to differences in cellular platinum accumulation, DNA platination or platinum-DNA adduct removal. We next analysed the relationship between p53 status and cisplatin-induced up-regulation of p53, and the susceptibility to cisplatin-induced apoptosis. Wild-type p53 containing NT2 and 2102 EP cells showed p53 up-regulation upon drug treatment, and NCCIT (mutant p53) and S2 (no p53 protein) cells did not. Consistently, the increase in wild-type p53 protein in NT2 and 2102 EP cells led to an increase in mRNA level of the p53 downstream gene p21/WAF/CIP, whereas mutant p53-containing NCCIT cells and p53-non-expressing S2 cells could not transactivate this p53-responsive gene. As NT2, NCCIT and S2 were readily triggered into apoptosis, while 2102 EP cells failed to undergo cisplatin-induced apoptosis, our data suggest that the presence of wild-type and/or transactivation-competent p53 might not be an absolute prerequisite for efficient induction of apoptosis in TGCT cell lines. Also endogenous levels of Bcl-2 and Bax expression did not correlate with cisplatin-induced apoptosis. In addition, the endogenous Bcl-2 and Bax expression was not affected by cisplatin treatment. The present study suggests that, at least in our panel of TGCT cell lines, hypersensitivity for cisplatin-induced apoptosis might not be necessarily correlated with the presence of wild-type p53 and is probably not associated with Bcl-2 and Bax expression.  相似文献   

6.
7.
PURPOSE: Testicular germ cell tumors (TGCTs) represent one of the few tumor types that are curable by antineoplastic therapy, probably due to the high sensitivity of this neoplasm to induction of apoptosis by chemotherapeutic agents and/or ionizing radiation. Here, we tested cell susceptibility to radiation-induced apoptosis in a panel of TGCT cell lines and attempted to correlate this with the known potentially relevant molecular determinants (p53 gene status and Bcl-2 family proteins) of apoptosis. METHODS AND MATERIALS: Induction of apoptosis by gamma-radiation was morphologically recognized in NT2, NCCIT, S2, and 2102 EP using Hoechst/PI staining and additionally confirmed by Western blot analysis of PARP cleavage. The p53 gene status was estimated by sequence analysis. Expression of p21/WAF/CIP was determined by Northern blot analysis and immunoblotting was used to monitor p53, Bax, Bcl-2, Bcl-x, and Bak protein levels. In vitro colony formation was studied to establish clonogenic survival curves. RESULTS: NT2 and NCCIT appeared to be susceptible for radiation-induced apoptosis, contrasting 2102 EP and S2 which were highly resistant. Sequence analysis showed that NT2, S2, and 2102 EP are homozygous for wild-type p53 (wtp53), whereas NCCIT contains mutant p53 (mtp53). NT2 and 2102 EP cells showed radiation-induced p53 upregulation, while NCCIT (mtp53) and S2 (no p53 protein) cells did not. Consistently, gamma-radiation-induced DNA damage resulted in a p53-dependent transactivation of the p21/WAF/CIP gene in NT2 and 2102 EP, but not in mtp53-containing NCCIT cells and p53 nonexpressing S2 cells. Constitutive expression of Bax, Bcl-2, Bcl-x, and Bak was not affected by radiation and showed no correlation with cell susceptibility to radiation-induced apoptosis. A discrepancy was found between apoptosis and reproductive death. CONCLUSIONS: The present study revealed that: i) the presence of wtp53 may not be absolutely required for the hypersensitivity for radiation-induced apoptosis in TGCT cell lines, ii) the molecular mechanism underlying the unique radiosensitivity was independent of the expression of Bcl-2 family proteins, and iii) cell susceptibility to apoptosis induction is not sufficiently informative to predict intrinsic radiosensitivity as determined by clonogenic survival.  相似文献   

8.
Human T-cell lymphotropic/leukemia virus type I (HTLV-I) is associated with T-cell transformation both in vivo and in vitro. Although some of the mechanisms responsible for transformation remain unknown, increasing evidence supports a direct role of viral as well as dysregulated cellular proteins in transformation. We investigated the potential role of the tumor suppressor gene p53 and of the p53-regulated gene, p21waf1/cip1 (wild-type p53 activated fragment 1/cycling dependent kinases [cdks] interacting protein 1), in HTLV-I-infected T cells. We have found that the majority of HTLV-I-infected T cells have the wild-type p53 gene. However, its function in HTLV-I-transformed cells appears to be impaired, as shown by the lack of appropriate p53-mediated responses to ionizing radiation (IR). Interestingly, the expression of the p53 inducible gene, p21waf1/cip1, is elevated at the messenger ribonucleic acid and protein levels in all HTLV-I-infected T-cell lines examined as well as in Taxl-1, a human T-cell line stably expressing Tax. Additionally, Tax induces upregulation of a p21waf1/cip1 promoter-driven luciferase gene in p53 null cells, and increases p21waf1/cip1 expression in Jurkat T cells. These findings suggest that the Tax protein is at least partially responsible for the p53-independent expression of p21waf1/cip1 in HTLV-I-infected cells. Dysregulation of p53 and p21waf1/cip1 proteins regulating cell-cycle progression, may represent an important step in HTLV-I-induced T-cell transformation.  相似文献   

9.
Bcl-2 family proteins are key regulators of apoptosis and function as cell death antagonists (e.g., Bcl-2, Bcl-XL, and Mcl-1) or agonists (e.g., Bax, Bad, and Bak). Here we report that among the Bcl-2 family of proteins tested (Bcl-2, Bcl-XL, Mcl-1, Bax, Bad, and Bak), Bcl-XL was unique in that its protein levels were tightly regulated by hemopoietins in both immortal and primary myeloid progenitors. Investigating signaling pathways utilized by cytokine receptors established that the regulation of Bcl-XL protein levels is mediated by the Jak kinase pathway and is independent of other signaling effectors including STATs, PI-3' kinase, and Ras. Moreover, we provide the first direct evidence that Bcl-X is altered in cancer, because bcl-X expression was activated selectively by retroviral insertions in murine myeloid and T-cell hemopoietic malignancies. Tumors harboring bcl-X insertions had altered bcl-X RNAs, expressed elevated levels of Bcl-XL protein, and lacked the requirements for cytokines normally essential for cell survival. Finally, overexpression of Bcl-XL effectively protected IL-3-dependent myeloid cells from apoptosis following removal of trophic factors. Therefore, Bcl-XL functions as a key cytokine regulated anti-apoptotic protein in myelopoiesis and contributes to leukemia cell survival.  相似文献   

10.
p53 has been implicated as a determinant of chemosensitivity and radiosensitivity. We measured chemosensitivity of human tumor cell lines (n = 11), with or without wild-type p53, following exposure to clinically useful chemotherapeutic drugs (n = 4). Chemosensitivity and apoptosis induction were correlated independently of p53 status or Bcl-2 protein levels in vitro. Wild-type p53 correlated with chemosensitivity in ovarian carcinoma and some Burkitt's lymphoma cells, but not in leukemia or lung cancer. Bcl-2 levels correlated with chemoresistance only in Burkitt's lymphoma. p53-dependent p21(WAF1/CIP1) induction and cell cycle arrest occurred at sublethal doses of chemotherapy, whereas at lethal doses of chemotherapy apoptotic death was observed, consistent with models proposing a relationship between the level of DNA damage versus survival or death. Loss of apoptosis induction was observed in drug-resistant ML-1 and HL-60 leukemia cells, without changes in p53 or Bcl-2. Targeted loss of p53 protein in H460 lung cancer cells using HPV-16 E6 inhibited the etoposide-induced G1 checkpoint but did not decrease chemosensitivity. Our studies suggest that the simple measurement of apoptosis induction may be a useful predictor of chemosensitivity, at least in vitro, and confirm that p53 status and Bcl-2 expression may be useful predictors of chemosensitivity in certain cell types.  相似文献   

11.
Cholangiocarcinoma is a malignant neoplasm originating from cholangiocytes. The mechanisms responsible for oncogenesis of cholangiocytes are unknown. Resistance to apoptosis, especially by altered expression of B-cell lymphoma/leukemia 2 (Bcl-2) family members, has been implicated as a mechanism contributing to malignant transformation. Thus, our aim was to test the hypothesis that altered expression of Bcl-2 family members by cholangiocarcinoma cells renders them resistant to apoptosis. We compared the apoptotic threshold and expression of the Bcl-2 protein family members, Bcl-2, Bcl-XL, and Bax, in two human cell lines: 1) nonmalignant human cholangiocytes immortalized by transfection with the simian virus 40 (SV 40) large T antigen; and 2) a malignant human cholangiocarcinoma cell line. Apoptosis was induced pharmacologically using beauvericin. Bcl-2, Bcl-x long, and Bax protein expression were evaluated by immunoblot analysis, and Bcl-2 expression was modulated using antisense technology. The cholangiocyte and malignant/nonmaligant phenotype of both cell lines was verified using both in vitro and in vivo approaches. Beauvericin induced apoptosis of nonmalignant cholangiocytes in a concentration- (0 to 25 micromol/L) and time- (0 to 6 hours) dependent manner. In contrast, malignant cholangiocytes were resistant to apoptosis. Although expression of Bcl-x long and Bax protein were similiar in the two cell lines, Bcl-2 protein expression was 15-fold greater in malignant than in nonmalignant cholangiocytes. An 18 mer bcl-2 antisense oligonucleotide reduced expression of Bcl-2 protein by 50% and increased the rate of beauvericin-induced apoptosis more than threefold in the malignant cells. Our results support the hypothesis that resistance to apoptosis by overexpression of Bcl-2 may be a feature of cholangiocarcinoma.  相似文献   

12.
Bax suppresses tumorigenesis in a mouse model system and Bax-deficient mice exhibit lymphoid hyperplasia suggesting that BAX functions as a tumour suppressor in human haemopoietic cells. We examined BAX expression in 20 cell lines derived from human haemopoietic malignancies and consistent with a potential tumour suppressor function, identified two cell lines, DG75 (a Burkitt lymphoma cell line) and Jurkat (a T-cell leukaemia line), which lacked detectable BAX expression. Apoptosis of DG75 cells induced by low serum or ionomycin was significantly delayed relative to similar Burkitt lymphoma cell lines with normal BAX levels. Although DG75 and Jurkat cells expressed several BAX RNA species including the prototypical BAX alpha RNA, the absence of BAX protein was due to single base deletions and additions in a polyguanine tract within the BAX open reading frame. These frameshift mutations result in premature termination of translation and have recently also been identified in some colon cancers with microsatellite instability. Although mismatch repair defects are not considered a common feature of haemopoietic malignancies, DG75 and Jurkat cells had widespread microsatellite instability and did not express detectable levels of MSH2. In Jurkat cells, lack of MSH2 expression was due to a point mutation in exon 13 of MSH2 resulting in premature termination of translation. Our results suggest that a pathway linking mismatch repair defects, BAX tumour suppressor frameshift mutations and resistance to apoptosis may be a key feature of some lymphomas and leukaemias.  相似文献   

13.
In the previous study, we have shown that propentofylline (PPF) could induce the cellular differentiation and apoptosis-related growth regression in the human glioma cell lines. Its biological functions were partly due to the increasing endogeneous NGF and its high affinity receptor, trk A productions. Although little has been known about the precise machinary regulating the propentofylline induced apoptosis. Recently, we have found that propentofylline could modulate some apoptosis related genes products in the glioma cell lines, i.e. NGF, trk A mRNA levels and Fas protein expressions were increased, whereas bcl-2 mRNA level was decreased. In the present study, we examined the apoptotic signal cascade, especially focusing on the expressing pattern of Bcl-2/Bax gene products. In the normal human astrocyte cells, Bax-beta was markedly expressed, whereas Bcl-2 and Bax-alpha proteins and mRNA were weakly or even nondetectable. Accordingly, Bax beta might be a dominant variant in the normal glial cells, which could have the appropriate balance of proapoptotic (Bax beta) and anti-apoptotic proteins (Bcl-2). In the glioma cells, we showed the over-expressions of Bcl-2 and Bax alpha compared with the normal counterparts. According to Bax dominant theory, Bax, not Bcl-2 may have a major role in regulating apoptosis by means of homodimerization. In might be implied that in the glioma cells, excessive expressions of Bcl-2 and Bax alpha would favor the formation of the Bax alpha/Bax beta heterodimer or the Bax beta/Bcl-2 heterodimer rather than the Bax beta/Bax beta homodimer, which might be presumed to be functional proteins. And finally the increasing relative ratio of Bax alpha/ Bax beta or Bax beta/Bcl-2 to Bax beta/Bax beta could allow the tumor cells to survive. Thus over-expression of the bcl-2 and bax alpha gene renders the glioma cells resistant to apoptosis. In the present study, PPF could promote Bax beta over-expression and Bcl-2 retardative expression in the glioma cells, whereas had no effect on Bax alpha expression. Therefore, PPF might promote apoptotic cell death through the mechanism that restore the glioma cells to the appropriate balance of proapoptotic and anti-apoptotic proteins like as normal astrocytes. Our results indicated that propentofylline might have a potential role as apoptotic modulators in the human glioma cell lines, not only its protective activities against neuronal ischemic damages.  相似文献   

14.
Susceptibility of a tumor cell to undergo chemotherapy-induced apoptosis appears to be dependent upon the balance of proapoptotic and survival factors that are expressed within any given cell. We have chosen to evaluate how expression of several of these proteins influences chemosensitivity of a panel of 10 pediatric tumor cell lines chosen from three tumor histiotypes: neuroblastoma, rhabdomyosarcoma, and pediatric glial tumors. The proteins evaluated were p53 and six members of the Bax/Bcl-2 family: three proapoptotic proteins (Bax, Bak, and Bcl-xS) and three survival factors (Bcl-2, Bcl-xL, and Mcl-1). We investigated whether there was any relationship between endogenous expression of these proteins and chemosensitivity (or resistance) to three chemotherapeutic agents that directly damage DNA (doxorubicin, actinomycin D, and topotecan) and a mitotic spindle poison (vincristine). Even though exogenous overexpression of wild-type p53 has been associated with a chemosensitive phenotype in several model systems we demonstrated no such relationship in these studies. In addition, expression levels of Bcl-2, Bcl-xL, Bcl-xS, Bak, or Mcl-1 did not correlate with sensitivity or resistance to the four drugs. However, there was a statistically significant correlation between endogenous levels of Bax protein and sensitivity to both doxorubicin and actinomycin D. We conclude that even though many proteins such as p53 and Bcl-2 have been shown to influence drug response when exogenously overexpressed in model systems, in unmodified cell lines endogenous protein levels may not generate the same results. We have demonstrated that endogenous Bax expression was the only protein found to be associated with chemosensitivity across the three different tumor histiotypes and propose that analysis of Bax may be a more useful prognostic indicator for tumor response to therapy than either p53 or Bcl-2.  相似文献   

15.
Bcl-2 expression is confined to the base of the colonic crypt, whereas transforming growth factor beta (TGFbeta) is expressed in the upper crypt, as are the apoptotic death promoters, Bak and Bax. In colonic adenoma cells, TGFbeta induces a growth arrest. In some adenoma cell lines, this is accompanied by apoptosis and in others it is not. In this study, we used two human colonic adenoma cell lines: RG/C2, in which TGFbeta induces a G1 arrest without apoptosis, and BH/C1, in which TGFbeta induces both a G1 arrest and apoptosis. TGFbeta does not induce apoptosis in RG/C2 cells even if hydrocortisone and insulin are removed from the culture medium. In BH/C1 cells, TGFbeta induces apoptosis in the presence of insulin and hydrocortisone. Apoptosis induced by TGFbeta is preceded by a reduction in p26-Bcl-2 protein levels. There was no change in the levels of the p30 phosphorylated form of Bcl-2 or in levels of the proapoptotic proteins Bax or Bak. RG/C2 cells did not show decreased Bcl-2 levels in response to TGFbeta-induced growth inhibition. Therefore, TGFbeta regulates Bcl-2 expression in colonic adenoma cells which undergo apoptosis in response to TGFbeta, but not in those which are growth inhibited, but resistant to TGFbeta-induced apoptosis. TGFbeta may play an important role in the colonic epithelium, not only in the inhibition of cell proliferation, but also in the regulation of apoptosis.  相似文献   

16.
The roles of Bcl-2 protein and the protein ratio of Bcl-2/Bax in regulating cell growth in various lymphoma cell lines were examined. A dose-dependent decrease in Bcl-2 protein expression was observed in the different lymphomas incubated with lipid-incorporated bcl-2 antisense oligonucleotides (L-bcl-2). Growth inhibition was observed in a transformed follicular lymphoma (FL) cell line, which has the t(14;18) translocation and Bcl-2 protein overexpression. One of the mechanisms by which L-bcl-2 growth inhibition is mediated in these transformed FL cells might be through apoptotic induction, because the treated cells had an increased apoptotic index and showed the typical DNA fragmentation. These studies indicate that Bcl-2 protein is critical in the growth regulation of transformed FL cells. L-bcl-2 did not induce growth inhibition in lymphoma cells not expressing Bcl-2 or Bax protein. Thus, the protein ratio of Bcl-2/Bax may also be important in regulating the growth of these lymphomas.  相似文献   

17.
Src-family nonreceptor protein tyrosine kinases (NRPTK) are associated with cell surface receptors in large detergent-resistant complexes: in epithelial cells, yes is selectively located in vesicle structures containing caveolin ("caveolae"). These formations are typically also endowed with glycophosphatidylinositol (GPI)-anchored proteins. In the present study, we observed lck, lyn, src, hck, CD4, CD45, G proteins, and CD55 (decay-accelerating factor) expression in the buoyant low-density Triton-insoluble (LDTI) fraction of selected leukemic cell lines and granulocytes. We provide a detailed analysis of the two most highly expressed NRPTK, p53/p56lyn and p56lck, which are involved in the transduction of signals for proliferation and differentiation of monocytes/B lymphocytes and T lymphocytes, respectively. We show that lyn is selectively recovered in LDTI complexes isolated from human leukemic cell lines (promyelocytic [HL-60], erythroid [K562] and B-lymphoid [697]) and from normal human granulocytes, and that lck is recovered from LDTI fractions of leukemic T- and B-lymphoid cell lines (CEM, 697). In LDTI fractions of leukemic cells, lck and lyn are enriched 100-fold as compared with the total cell lysates. Analysis of these fractions by electron microscopy shows the presence of 70- to 200-nm vesicles: lyn and lck are homogenously distributed in the vesicles, as revealed by an immunogold labeling procedure. These novel results propose a role for these vesicles in signal transduction mechanisms of normal and neoplastic hematopoietic cells. In support of this hypothesis, we further observed that molecules participating in B- and T-cell receptor activation cofractionate in the LDTI fractions, CD45/lyn (B cells) and CD45/lck/CD4 (T cells).  相似文献   

18.
The down-regulation of apoptosis may be an essential mechanism for tumour cell expansion in slowly proliferating tumours such as multiple myeloma. We studied eight myeloma cell lines for the presence of Bcl-2, which inhibits apoptosis, of Bax, which counteracts Bcl-2, of Bcl-x(L) and Bcl-x(S), which act in an anti- and pro-apoptotic fashion, respectively, and of Apo-1/Fas, which induces programmed cell death, when activated by the Apo-1/Fas ligand or the relevant monoclonal antibody (mab). All cell lines constitutively expressed homogenous amounts of Bcl-2, but displayed different amounts of Bax and Bcl-x proteins. The Apo-1/Fas antigen could be detected in seven out of eight myeloma lines, but expression levels varied considerably. The relative expression levels of Apo-1/Fas correlated with that of Bax, but not with that of Bcl-2 or Bcl-x subtypes. Furthermore, the effectiveness of the Apo-1/Fas mab was associated with the relative expression levels of the Apo-1/Fas and with that of the Bax antigen, but not with that of the Bcl-2 and Bcl-x antigens. We further showed that wild-type p53 function is not required for Apo-1/Fas-induced apoptosis, nor is it necessary for the expression of Bax or Apo-1/Fas antigens in myeloma. In conclusion, our results suggest a p53-independent co-regulation of Apo-1/Fas and Bax, as well as a role for Bax in Apo-1/Fas-induced apoptosis in myeloma.  相似文献   

19.
Previous models of cutaneous carcinogenesis have primarily focused on the regulation of keratinocyte (KC) proliferation and differentiation. However, it has become clear in many neoplastic systems that altered rates of cell death and/or inability to undergo growth arrest can also contribute to the development of cancer. Apoptosis-regulatory proteins include those that block apoptosis such as Bcl-2 and Bcl-x, whilst a related protein Bax promotes apoptosis. Cell cycle regulatory proteins include those associated with growth arrest, i.e. p21wafl, p53, and those associated with proliferation, i.e. Ki-67. Paraffin embedded samples from ten different lesions of squamous cell carcinoma (SCC), Bowen's disease (BD), keratoacanthomas (KA), and nine normal adult skin samples were stained by immunohistochemistry to detect expression of Bcl-2, Bcl-x, Bax, Ki-67, p21wafl, p53 and apoptosis (TUNEL assay). Compared to low levels of Bcl-x and Bcl-2 immunostaining in normal skin, all the squamoproliferative lesions had strong and diffuse KC expression of Bcl-x (>80%) but minimal to absent KC Bcl-2 expression (<15%). Bax immunopositivity was limited to the basal layer in normal skin and BD. In contrast, by examining serial sections both Bcl-x and Bax appeared to be coexpressed by the majority of malignant KCs in KA and SCC (>70%). These immunostaining profiles reveal that squamoproliferative lesions, including invasive transformed KCs, preferentially express Bcl-x over Bcl-2, in addition to upregulating their Bax levels. Even though there were numerous TUNEL positive cells in these squamoproliferative lesions, no other evidence of apoptosis was seen reinforcing the necessity to use caution when relying on TUNEL staining for identification of programmed cell death in skin biopsies. Normal sun-exposed skin had low but detectable p53 and rare p21wafl KC expression. Significantly higher numbers of p21wafl and p53 immunopositive KCs were noted throughout the lesions in BD and SCC in contrast to KA where p53 and rare p21wafl immunopositive KCs were primarily limited to the periphery of the tumor cell islands. In general, p53 KC expression was higher in all squamoproliferative lesions and sun-exposed normal skin compared to p21Wafl expression. Summary of the expression of cell cycle regulatory proteins for both p21wafl and p53 KC expression was: SCC > BD > KA, in marked contrast to Ki-67 KC expression which was: BD > KA > SCC. The relatively few malignant cells in SCC that were actively participating in the cell cycle (i.e. Ki-67 positive) suggests that these neoplasms may arise primarily by increased cell survival and resistance to apoptosis rather than by hyperproliferation. These studies emphasize the importance of examining multiple members of protein families that regulate apoptosis, proliferation, growth arrest, and differentiation. It is the overall balance between these cellular phenomena that determine whether a cell remains viable or undergoes programmed cell death and contributes to the appearance of a neoplasm. The overexpression of Bcl-x may confer a survival advantage to malignant KCs unable to growth arrest to repair damaged DNA (mutant p53) and/or undergo terminal differentiation (increased p21wafl). Thus, mutation or aberrant expression of such proteins may participate in the multistep process of carcinogenesis that gives rise to these squamoproliferative lesions.  相似文献   

20.
The role of the basal activity of the serine/threonine protein kinase, protein kinase C (PKC) in the regulation of anti-CD95-induced apoptosis in Jurkat T cells was investigated. The PKC-specific inhibitor GF 109203X and the proposed cPKC-specific inhibitor Go 6976, in a concentration-dependent manner, increased the percentage of cells undergoing apoptosis induced by anti-CD95 mAb as demonstrated by propidium iodide (PI) staining, TUNEL assay and DNA fragmentation by gel electrophoresis. Furthermore, Go 6976 and GF 109203X abrogated phorbol myristate acetate-induced inhibition of anti-CD95-induced apoptosis. To examine the molecular mechanism by which PKC modulates anti-CD95-induced apoptosis, the effects of Go 6976 on known effector and regulatory molecules of cell death were studied. Increased recruitment of cells undergoing apoptosis was associated with enhanced anti-CD95-induced proteolytic cleavage of the most receptor-proximal cysteine protease caspase-8, subsequent cleavage and activation of the machinery protease caspase-3, and cleavage of the caspase substrates DNA-dependent protein kinase catalytic subunit, poly-(ADP-ribose) polymerase and lamin B1. CD95 and FADD protein levels in Jurkat T cells were not altered by Go 6976 treatment. In addition, Go 6976 did not alter protein levels and subcellular distribution of the anti-apoptotic molecules Bcl-2 and Bcl-xL. These data suggest indirectly that basal PKC activity acts at an early stage in the anti-CD95-induced caspase pathway to attenuate subsequent activation of downstream effector molecules and associated apoptosis in Jurkat T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号