首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用粉末注射成形方法制备了具有高导热性能的AIN陶瓷导热材料,研究了烧结温度对注射成形AIN陶瓷致密化的影响,及不同Y2O3含量对注射成形AIN陶瓷的晶界第二相、热导率和显微结构的影响.结果表明:在本实验条件下,当烧结温度在1850℃时,AIN的相对密度达到99.5%;Y2O3的添加量对AIN的晶界第二相的影响和传统AIN制备工艺中有较大的不同,在Y2O3含量为3%(质量分数,下同)时有多余的Y2O3成为晶界相,这主要是注射成形工艺中引入大量的残碳造成的.AIN晶界第二相的组成和分布对其热导性能有很大的影响,注射成形AIN陶瓷工艺中影响AIN热导率的关键因素是晶界第二相的分布和氧离子是否扩散进入晶格中.当Y2O3添加量为5%时,AIN中的晶界第二相主要为YN和Y2O3,样品具有最高的热导率167.5 W(m·K).  相似文献   

2.
烧结助剂对高纯氧化铝陶瓷致密化过程的作用   总被引:1,自引:0,他引:1  
分别以TiO2和MgO-La2O3复合物为烧结助剂,采用常压烧结工艺制备高纯氧化铝陶瓷。探讨了两类烧结助剂对氧化铝陶瓷显微结构的影响,并分析了其气孔排出过程。结果表明,添加TiO2可以降低高纯氧化铝陶瓷的烧结温度,易发生晶粒二次长大、形成晶内孔。添加MgO-La2O3复合烧结助剂降低烧结温度同时产生第二相物质,阻碍晶界迁移,减小晶粒尺寸,提高坯体致密度。  相似文献   

3.
选用CaO–SiO_2–TiO_2作为氧化铝陶瓷的烧结助剂,在空气气氛下经过常压烧结制备Al_2O_3陶瓷。研究了烧结助剂中CaO质量分数以及烧结温度对Al_2O_3基微波陶瓷的相组成、微观结构和介电性能的影响。结果表明:添加含CaO烧结助剂的Al_2O_3陶瓷中,出现了CaAl_(12)O_(19)第二相,相含量随着CaO质量分数的增加而增加;随着烧结助剂中CaO质量分数的增加,Al_2O_3陶瓷试样介电常数增大,品质因数先升高后降低。随着烧结温度的升高,Al_2O_3陶瓷相对密度和品质因数先升高后降低,介电常数和谐振频率温度系数增大。当烧结温度为1450℃、烧结助剂中CaO质量分数为0.4%时,烧结体的相对密度达到最大值98.61%,介电常数为9.88,品质因数值为21957GHz,谐振频率温度系数为-21.353×10~(-6)/℃。  相似文献   

4.
使用Si3N4、SiC陶瓷微粉为原料,氧化铝(Al2O3)和氧化钇(Y2O3)为烧结助剂,通过放电等离子烧结(SPS)技术快速制备了SiC/Si3N4复相陶瓷,并研究了SiC的添加量、SPS的 烧结温度、压力和保温时间等参数对烧结试样相对密度、力学性能及显微结构的影响.结果表明,SiC颗粒补强增韧Si3N4陶瓷的最佳添加量为15%,相对与单相Si3N4陶瓷,维氏硬度提高了6.6%,断裂韧性提高了5%,抗弯强度提高了24%,样品晶粒比较均匀,SiC颗粒诱发穿晶断裂和钉扎效应提高了基体的断裂韧性.  相似文献   

5.
无压烧结,也称常压烧结,是获得致密且复杂形状的陶瓷材料最常用且经济的烧结方式。在无压烧结过程中,通过烧结助剂、工艺或制度对所获得陶瓷的微组成和结构进行调控,是提升陶瓷制品致密度和性能的关键。从超高温陶瓷材料的研究背景和意义出发,总结了国内外近年来超高温陶瓷的发展趋势,以及在超高温陶瓷无压烧结致密化和微结构调控方面的研究进展。陶瓷粉体的表面能大于多晶烧结体的晶界能,二者的差异是陶瓷烧结的驱动力。因此,加快陶瓷无压烧结致密化有两种途径,一种是增大原料粉体的表面能;另一种是降低多晶陶瓷的晶界能。以最重要的超高温陶瓷的体系二硼化锆(ZrB_2)为例,展开论述。实现超高温陶瓷无压烧结致密化途径的主要方法有3种:(1)降低原料粒径,提高粉体表面能;(2)去除粉体表面氧污染,增大粉体的烧结活性;(3)引入能与陶瓷基体晶界润湿的液相,降低多晶陶瓷晶界能。文章围绕这些措施在实践中的具体应用而展开, ZrB_2陶瓷的晶粒形态和尺寸也可以在这些过程中得以调控。最后,文章还对超高温陶瓷无压烧结的发展前景进行了展望。  相似文献   

6.
采用无压烧结工艺,通过添加质量分数为5%的氧化铝烧结助剂,制备得到了碳化硼陶瓷,其中烧结温度从2000℃到2250℃,保温时间为1、2和3 h。对烧结试样进行了体积密度、显气孔率、维氏硬度、显微形貌和晶体结构测试,并与2250℃下烧结得到的不添加烧结助剂碳化硼试样进行了比较。实验结果表明:由于烧结助剂与碳化硼在扩散运动中的相互作用,导致添加氧化铝助剂无压烧结碳化硼晶粒的形态变化具有温度选择性;氧化铝助剂所体现的液相扩散作用和钉扎作用,既可阻碍碳化硼晶粒长大,又可大幅度降低碳化硼的气孔率;通过烧结工艺控制氧化铝助剂成分在晶粒烧结体中的比例,可以将氧化铝成分完全包裹在碳化硼晶粒内部,有利于碳化硼烧结中的晶粒控制和空隙调整,从而避免助剂成分对烧结碳化硼可能造成的不利影响。  相似文献   

7.
稀土氧化物对碳化硼陶瓷性能的影响   总被引:2,自引:0,他引:2  
以稀土氧化物为主要烧结助剂,以碳化硼粉末为基体,采用真空热压烧结技术制备出碳化硼陶瓷.研究了成分配比、烧结工艺对材料致密度及力学性能的影响;分析了稀土氧化物对烧结温度及材料性能的影响,并确定最佳烧结温度;探讨不同添加剂对碳化硼陶瓷显微结构影响及烧结机理.结果表明,以稀土氧化物为主要烧结助剂,其烧结温度降低约80℃;碳化硼陶瓷的最佳材料配方与烧结工艺为:m(B4C):m(La2O3):m(Al2O3):m(C)=70:6:12:12,烧结温度1 850℃,压力20MPa,保温时间1h;所得碳化硼陶瓷性能:相对密度92.5%,抗弯强度156.76MPa,硬度97HRA;分别以氧化铝和活性碳、氧化钇、氧化镧、氧化钇和氧化镧为烧结助剂时,碳化硼陶瓷烧结过程中形成的新相分别为Al8B4C7、Y3Al5O12、LaAlO3、(Y3Al5O12 LaAlO3).其中含稀土相,尤其是新相LaAlO3与碳化硼颗粒表面有良好的结合,因此提高了致密度,降低了烧结温度.  相似文献   

8.
以高纯α-Al_2O_3粉体为原料,MgO为烧结助剂,采用放电等离子烧结技术(SPS)制备氧化铝陶瓷。研究了MgO添加量和烧结温度对氧化铝陶瓷致密化过程及显微结构的影响,并分析了烧结过程中气孔的扩散与演变。结果表明:添加适量MgO可以降低氧化铝陶瓷的烧结温度,抑制晶粒长大,提高致密度,0.25%(质量分数)是MgO的最佳添加量;随着烧结温度的升高,晶粒逐渐长大,气孔率降低,1 550℃为最佳烧结温度;在此条件下获得的微米晶氧化铝陶瓷,其相对密度达到99.96%,平均晶粒尺寸约为3μm,且晶粒大小均匀,几乎无异常长大现象。  相似文献   

9.
原位制备细晶Si3N4-Si2N2O复相陶瓷   总被引:2,自引:0,他引:2  
以Y2O3和Al2O3纳米陶瓷粉体作为烧结助剂,液相烧结非晶纳米Si3N4陶瓷粉体,制备Si3N4-Si2N2O复相陶瓷。Si2N2O相通过原位反应2Si3N4(s) 1.5O2(g):3S12N2O(s) N2(g)生成。160012烧结,烧结体保温30min,Si2N2O体积分数达到52%,基本由细小均匀的球形晶粒构成。平均粒径尺寸210nm,相变过程中,个别颗粒异常长大,长径比达到1.5。保温时间对孔隙、密度和粒径产生重要影响:随着保温时间的延长,孔隙逐渐收缩减小,烧结体的致密度逐渐提高,晶粒逐渐长大,保温60min,孔隙几乎完全闭合,相对密度达到99.1%,平均粒径280nm。当保温时间达到90min时,相对密度增加并不明显,但平均粒径长大到360nm。  相似文献   

10.
通过喷雾造粒方法对共沉淀合成的纳米粉体进行改性,制备出球形的纳米颗粒.用XRD对粉体进行物相分析;用TEM观察了改性前粉体的颗粒形状、尺寸大小和团聚情况;用SEM观察改性前后粉体的团聚体的颗粒形状、尺寸大小与分散性,以及陶瓷热腐蚀抛光后的表面形貌.结果表明:PVB添加质量分数1.0%为最优添加量;改性后粉体所制素坯的密度显著提高,从而影响陶瓷的致密度和晶界形貌;经真空烧结制备出相对密度达99.95%的无孔净晶界YAG透明陶瓷,陶瓷晶粒的平均尺寸为10μm左右,尺寸分布较均匀,晶界清晰,晶粒中与晶界处较干净,无杂质与气孔的存在.  相似文献   

11.
12.
正On September 14,the reporter learnt from the Seminar on Application of New Rare Earth High-iron Aluminum Alloy Cable Technologies for Energy Conservation and Environmental Protection held by Chongqing Electric Industry Association that a rare earth high-iron aluminum alloy cable company with  相似文献   

13.
正According to news from Beijing on October 10,the Recycling Metal Branch of China Nonferrous Metals Industry Association said that in the first three quarters of 2014,China’s total output of secondary nonferrous metals(copper,aluminum,lead,zinc)was 7.37million tonnes,recording a slight increase of  相似文献   

14.
正The recent period has witnessed heated discussion on resource tax reform as a hot spot topic in the industry.Some information sources disclosed that the resource tax reform of the nonferrous metal industry would be enforced next year in the latest,the levy method will be changed from quantity-based levy to pricebased levy.  相似文献   

15.
16.
正On October 19,the Shanxi Province Pinglu County Phase I 800,000t/a Aluminum Oxide Project of Shanxi Fusheng Aluminum Co.,Ltd,a subordinate of Hangzhou Jinjiang Group,started operation.This is the fourth Aluminum oxide project constructed and operated by Jinjiang Group.  相似文献   

17.
正When eight ministries and commissions jointly issued decrees to rectify rectification the rare earth industry,and cracked down on"illegal rare earth",enterprises inside the industry are also developing joint union and coalition to usurp resources.In the evening of October 13,Hongda Xingye published public notice,saying that it planned  相似文献   

18.
正In early May,the 300,000 t/a Low Oxidizing Copper Rod Project of Hubei Daye Nonferrous Metals Co.,Ltd("Daye Nonferrous Metals")started production.As the first copper deep processing project independently invested and constructed by Daye Nonferrous Metals,this project can fully utilize its cathode copper raw material advantage to manufacture low oxidizing copper  相似文献   

19.
正From August to September,the Chinese Entrepreneur Survey System organized and implemented"Chinese Entrepreneur Questionnaire Follow-up Survey 2014".This marked the 22nd time of national entrepreneur annual follow-up survey organized by this  相似文献   

20.
正Judging from China’s copper consumption field,the biggest consumption unit is electric power,which accounts for 47%of total consumption;it is followed by light industry sector,including household electrical appliance,machinery,durable goods and hardware etc,which accounts for 22%of total consumption;followed by transportation field,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号