首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A flow-cytometric (FCM) and fluorescence in situ hybridization (FISH) study was performed in 153 patients with clinically localised prostate cancer (PC) to evaluate retrospectively the prognostic significance of DNA ploidy, S-phase fraction (SPF) and chromosome 7 copy number. Deletions in 7q31.1 were analysed in a subset of 26 tumours. The mean follow-up time was 6 years (range 4-16 years). Twelve cases of benign prostatic hyperplasia (BPH) were studied as a control. Chromosome 7 enumeration and deletion studies were conducted using the alpha-satellite D7Z1 probe and a cosmid probe specific for the marker D7S522 on 7q31.1. Higher SPF was associated with shorter overall survival and shorter time to local progression and metastasis. Near diploid (DNA index 1.05-1.20) cases had a lower frequency of metastases and lower Gleason scores than aneuploid cases. Increased absolute chromosome 7 copy number (centromere count) was associated with higher Gleason score, higher SPF and shorter local progression-free and prostate cancer survival. Absolute chromosome 7 copy number was concordant with FCM DNA ploidy in the majority (75%) of cases. Relative gain or loss of chromosome 7 (centromere counts compared to ploidy) was infrequent, and no correlation was found with clinical parameters. Deletions in 7q31.1 were infrequent. Our results indicate that in localised PC (i) SPF is a prognostic factor, (ii) absolute chromosome 7 copy number is concordant with the ploidy status of the tumour (relative gain or loss of chromosome 7 is infrequent and has no independent prognostic value) and (iii) the frequency of deletions in 7q31.1 is low and not correlated with clinical outcome.  相似文献   

2.
Cytogenetic and molecular analysis of DNA sequences with highly polymorphic microsatellite markers have implicated allele loss in several chromosomal regions including 3p, 6p, 6q, 8p, 9p, 9q, 11p and 14q in the pathogenesis of sporadic renal cell carcinomas (RCCs). Deletions involving the long arm of chromosome 7 have not been described in RCCs although they have been seen in several other tumor types. However, there have been no detailed analysis of loss of heterozygosity (LOH) of 7q sequences in sporadic RCCs. We therefore studied LOH for DNA sequences on 7q with 10 highly polymorphic markers in 92 matched normal/tumor samples representing sporadic RCCs including papillary, nonpapillary, and oncocytomas in order to determine whether allelic loss could be detected in a tumor type with no visible 7q rearrangements at the cytogenetic level. We found chromosome 7q allele loss in 59 of 92 cases (64%) involving one, two, or more microsatellite markers. The most common allele loss included loci D7S522 (24%) and D7S649 (30%) at 7q31.1-31.2, a region that contains one of the common fragile sites, FRA7G. By comparative multiplex PCR analysis, we detected a homozygous deletion of one marker in the 7q 31.1-31.2 region in one tumor, RC21. These results support the idea that a tumor suppressor gene in 7q31 is involved in the pathogenesis of sporadic renal cell carcinomas.  相似文献   

3.
We analysed 42 differentiated thyroid tumors including 15 follicular adenomas (FA), 13 papillary thyroid cancers (PTC) and 14 follicular thyroid carcinomas (FTC) with 13 microsatellite markers specific for the long arm of human chromosome 7 within 7q31; this region is deleted frequently in several other tumor types. Overall, 20 of the 42 samples analysed (48%) displayed LOH with one or more of the markers tested. LOH was detected most frequently (78%) in FTC, the most malignant of the thyroid tumors. A smallest common deleted region (SCDR) was defined in this tumor type flanked by markers D7S480 and D7S490. This SCDR is distinct from D7S522, the most commonly deleted locus in many other tumors, which was deleted in only one FTC. D7S522 did show LOH in two of six informative PTCs. None of the PTC and only two of the FAs showed LOH in the FTC SCDR. Since FA is considered a premalignant stage of FTC, our results suggest that inactivation of a putative tumor suppressor at 7q31.2 may be acquired during adenoma to carcinoma progression. The absence of LOH at this locus amongst PTC suggests that inactivation of this tumor suppressor is specific for FTC. In conclusion, LOH at 7q31 is a frequent event in differentiated thyroid cancer, and we have defined a 2 cM SCDR specific for FTC.  相似文献   

4.
It is widely accepted that an accumulation of genetic alterations plays an important role in the genesis of human cancers, but little is known about prostate cancer in this respect. Recent studies have identified regions on chromosome arms 8p, 10q, 16q, and 18q that are frequently deleted in human prostate cancer. We have previously described a loss of heterozygosity (LOH) at the Met locus on chromosome band 7q31 in a study of 20 localized prostate tumors. To determine whether a region on the 7q arm is important in the initiation and/or progression of prostate cancer, prostate tissue from 13 patients with confined prostate tumors, 17 with local extracapsular extension, and 13 with metastatic forms were analyzed for LOH, using a DNA probe for RFLP (pMetH) and 8 CA microsatellite repeats (7 on 7q21-q33 and 1 on 7p). Twenty (47%) of the 43 cases studied showed LOH at one or more 7q loci. The most frequently deleted region was chromosome 7q31.1-7q31.2, whereas the centromeric locus on 7q21 was generally conserved. The percentage of LOH was normally distributed around the D7S480 locus. Moreover, the rate of LOH in the 7q31 region was lower in metastatic tumors than in localized tumors. These results strongly suggest the presence of a tumor suppressor gene on the chromosome band 7q31 with an important role in the early stages of prostate cancer.  相似文献   

5.
Only limited data are available on chromosomes specifically involved in the multistep tumorigenesis of prostate cancer. To investigate the cytogenetic status at different stages of prostatic tumor development, we have applied interphase in situ hybridization (ISH) with a set of (peri) centromeric DNA probes--specific for chromosomes 1, 7, 8, and Y--to routinely processed tissue sections of prostatic specimens from 75 different individuals. Our panel consisted of: 16 normal/benign prostatic hyperplasia specimens; 23 primary, localized, prostatic tumors (N0M0 stage); 20 regional lymph node metastases (M0 stage); and 16 distant metastases. Numerical aberrations of at least one chromosome were not observed in normal/benign prostatic hyperplasia cases, but were present in localized tumors (39%), regional lymph node metastases (40%), and distant metastases (69%). Within the different pTNM groups, we observed the following aberrations (listed, within each series, in decreasing order of frequency): -Y, +8, -8, +7 in primary tumors; +8, +7, -Y, +Y, -8 in regional lymph node metastases; and +8, +7, +1, -Y, -8 in distant metastases. In primary tumors, the number of aberrant cases increased significantly with local tumor stage (p < 0.05). A significant increase in gain of chromosome 8 was also observed (p < 0.02). Gain of chromosome 7 and/or 8 showed a significant increase with progression of local tumor stage (p < 0.02). Specific involvement of chromosome 8 was seen in bone metastases, but not in hematogenous metastases to other sites (p = 0.02). Comparative genomic hybridization analysis of these bone metastases disclosed centromere 8 gains as amplifications of the (whole) 8q arm, whereas centromeric loss appeared to be due to loss of 8p sequences. With progression toward metastatic disease, an accumulation of genetic changes was seen as exemplified by gain of chromosome 1, which was solely observed in distant metastases. With tumor progression, gain of chromosomes 7 and/or 8 significantly increased (p = 0.03), whereas the number of cases with aberrations of the Y chromosome did not change. Furthermore, ploidy status determined by ISH revealed a significant increase in the number of aneuploid cases along with advancement of pTNM stage (p = 0.04). Collectively, the data strongly suggest that: (a) gain of chromosome 7 and/or 8 sequences is implicated in prostatic tumor progression; (b) gain of chromosome 8 sequences is related to local tumor growth; (c) overrepresentation of 8q sequences, most likely by isochromosome 8q formation, is involved in metastatic spread to the bone; and (d) changes in the centromeric copy number, as detected by interphase ISH, might in some cases represent structural alterations, such as an isochromosome.  相似文献   

6.
The first gene found to be amplified in human glioblastomas was EGFR at 7p12. More recently the MET gene at 7q31 was also reported amplified. We have studied chromosome 7 in a series of 47 glioblastomas by FISH, RFLP and microsatellite analysis. Four per cent (2/47) had 1 centromere, 26% (12/47) 2, 32% (15/47) 3, 4% (2/47) 4, and 34% (16/47) had subpopulations with variable numbers of chromosome 7 centromeres. In 25 of the 47 tumors (53%) the pattern of allelic imbalance observed at each informative locus was similar and in accord with the FISH data, indicating loss or gain of complete chromosome copies. In 32% of tumors (15/47) varying allelic imbalance was seen at different loci along the chromosome indicative of loss or gain of parts of chromosome 7 on a background of disomy, trisomy, tetrasomy, or polysomy. Amplification was studied in an extended series of 121 glioblastomas, and was seen at the 7p12 region in 47 tumors (39%). Forty-two tumors showed amplification of EGFR and 12 of these had extensive amplicons including a number of adjacent loci, always involving only 1 allele. The amplicons of 5 tumors (11%) did not include EGFR, indicating that other unidentified genes in the region are targeted for amplification. Amplification of MET was not found. The findings show that copy number changes of chromosome 7 are common and that a number of genes may be targeted for amplification at 7p12 in glioblastomas.  相似文献   

7.
Alterations of chromosome 7 are among the most frequent cytogenetic abnormalities found in human breast carcinoma. We examined genetic changes on chromosome 7 in 113 primary human breast tumors, using both microsatellite and restriction fragment length polymorphism/variable number of tandem repeats polymorphism markers mapping to the long arm (15 markers) and the short arm (8 markers). Allelic imbalance at 1 or more loci was observed in 50 (44%) of 113 tumors on the long arm of chromosome 7 and in 41 (36%) tumors on the short arm. Genetic changes of one arm were significantly associated with alterations of the other arm. The 50 7q-altered tumor DNAs exclusively showed a loss of heterozygosity (LOH), 23 (46%) at all informative loci tested on 7q and 27 (54%) at some loci (interstitial and/or telomeric deletions on 7q). The pattern of LOH of these 27 tumors enabled us to identify 3 distinct consensus regions of deletions on 7q, only 1 of which (7q31 region) has already been described in breast cancer. Among the 41 7p-altered tumor DNAs, 32 had a gain and/or loss of the entire short arm of chromosome 7. Fourteen tumor DNAs showed an allelic gain, and 18 tumor DNAs showed a LOH at each locus on the short arm. The other 9 7p-altered tumors showing partial random alterations of chromosome 7p revealed no common altered regions. This is the first report of an association between alterations of DNA sequences on chromosome 7p and breast cancer. The results suggest that tumor suppressor genes are present on the long arm of chromosome 7 and are associated with breast tumorigenesis. Moreover, the frequent loss or gain of a whole copy of chromosome 7p suggests the involvement of a gene dosage effect of this chromosomal arm in the pathogenesis of breast cancer.  相似文献   

8.
The presence of a tumour suppressor gene on chromosome 7q is indicated by cytogenetic, loss of heterozygosity (LOH) and chromosome transfer studies. One candidate gene in this region is Plasminogen Activator Inhibitor-1 (PAI-1). The PAI-1 gene product is involved in proteolysis and may therefore influence tumour spread and invasion. We have analysed a series of 139 ovarian epithelial tumours at four loci in the region 7q21-q31 which includes the PAI-1 gene. The highest rates of loss were found in malignant tumours (FIGO stages I-IV) at markers D7S471 (38%, 20/52 informative cases) and D7S522 (34%, 15/44). No loss was seen in benign tumours and only one out of 27 (4%) informative LMP tumours demonstrated LOH. The smallest region of overlap (SRO) lies between D7S471 and PAI-1. We also identified a rearrangement in one tumour in the PAI-1 gene, suggesting that this may be the inactivated gene in this region. In addition LOH at the more distal marker, D7S522, which lies outside the SRO, shows significant association with stage (P=0.0343) and with LOH on chromosome 13 (P=0.0024). This is in contrast to all other markers examined. These data suggest the presence of two critical regions on 7q which may be important in subsets of epithelial ovarian tumours.  相似文献   

9.
Glioblastoma multiforme (GBM) is the most malignant glial brain tumor in humans. The fact that deleted copies of chromosome 10 are observed frequently in primary GBM tumors supports the hypothesis that one or more tumor suppressor genes located on chromosome 10 occupy crucial growth control checkpoints for glial cells. Deletion mapping in primary GBM tumors using the loss of heterozygosity (LOH) test has implicated the 10q24-10qter region as one possible site for a gene. We report here on the molecular cytogenetic analysis of chromosome 10 abnormalities in a human GBM cell line, JBSA. LOH testing showed that JBSA cells were hemizygous for chromosome 10. Molecular cytogenetic analysis showed that the undeleted homologue was involved in a reciprocal translocation t(7;10)(p21;q22). The translocation breakpoint on chromosome 10 lay within band q22 between D10S19 and D10S4. The fact that JBSA cells lack one homologue of chromosome 10 and carry a translocation breakpoint on the remaining one, proximal to the smallest region of overlap reported in primary tumor deletions, suggests that 10q22 may be another possible site for a tumor suppressor gene involved in GBM.  相似文献   

10.
Comparative genomic hybridization (CGH) is a recent molecular cytogenetic method that detects and localizes gains or losses in DNA copy number across the entire tumor genome. We used CGH to examine 9 glioma cell lines and 20 primary and 10 recurrent glioblastoma tumors. More than 25% of the primary tumors had gains on chromosome 7; they also had frequent losses on 9p, 10, 13 and Y. The losses on chromosome 13 included several interstitial deletions, with a common area of loss of 13q21. The recurrent tumors not only had gains on chromosome 7 and losses on 9p, 10, 13 and Y but also frequent losses on 6 and 14. One recurrent tumor had a deletion of 10q22-26. Cell lines showed gains of 5p, 7 and Xp; frequent amplifications at 8q22-24.2, 7q21-32 and 3q26.2-29 and frequent losses on 4, 10, 13, 14 and Y. Because primary and recurrent tumors and cell lines showed abnormalities of DNA copy number on chromosomes 7, 10, 13 and Y, these regions may play a fundamental role in tumor initiation and/or progression. The propensity for losses on chromosomes 6 and 14 to occur in recurrent tumors suggests that these aberrations play a role in tumor recurrence, the development of resistance to therapy or both. Analysis of common areas of loss and gain in these tumors and cell lines provides a basis for future attempts to more finely map these genetic changes.  相似文献   

11.
Previous cytogenetic and loss of heterozygosity (LOH) data suggest that disruption of chromosome 11q23-qter occurs frequently in epithelial ovarian cancer and is associated with an adverse clinicopathological phenotype. Ten polymorphic microsatellite repeat loci were analyzed by PCR from the 11q22-q25 region between D11S35 and D11S968 in 40 ovarian tumors (including 31 epithelial ovarian cancers). Two distinct regions of loss were detected, suggesting possible sites for genes involved in epithelial ovarian neoplasia: a large centromeric region between D11S35 and D11S933 (11q22-q23.3) and a telomeric 8.5-Mb region lying between D11S934 and D11S1320 (11q23.3-24.3) not previously defined. LOH of the latter region but not the former one was significantly associated with poor survival, despite all tumors in this study having LOH somewhere on chromosome 11. This analysis provides a starting point for positional cloning.  相似文献   

12.
Cytogenetic analyses have revealed structural rearrangements of chromosome 1 in a large fraction of head and neck carcinomas (HNCA). These aberrations frequently affect chromosomal band 1p13 and the centromeric region, the latter often in the form of isochromosome i(1q) and whole-arm translocations. To delineate the critical region involved in rearrangements of proximal 1p, we have undertaken a more precise breakpoint mapping in 13 HNCAs, using metaphase fluorescence in situ hybridization with 11 yeast artificial chromosome (YAC) clones spanning 1p. All of the tumors had chromosome 1 changes at G-banding analyses. Fluorescence in situ hybridization showed that in almost all of the cases, at least one copy of chromosome 1 was affected by centromeric rearrangement. By the use of YAC clones mapped to juxtacentromeric regions and a centromere-specific alpha-satellite probe, we detected variable breakpoints in the whole-arm translocations. At the cytogenetic level, 1p13 rearrangements were frequent. However, molecular breakpoints within this band varied among the HNCAs tested. The lack of consistently rearranged chromosome segments indicates that the pathogenetically important consequence of 1p rearrangements in HNCAs is loss and/or gain of genes outside the breakpoint regions. In an assessment of the genomic imbalances, partial or complete overrepresentation of 1q was seen in eight cases. Loss of 1p material was also identified in eight cases; and in four of them, the deleted segments were too small to be discovered by G-banding analysis. The minimal overlapping deleted region was in the interval between YAC 959C4 (band p11-p12) and the centromere (p10). Our findings indicate that a target region potentially harboring tumor suppressor gene(s) crucial for HNCA is located within chromosomal bands 1p11-p13.  相似文献   

13.
We performed cytogenetic studies of 36 human epithelial ovarian carcinomas using in situ culture and robotic harvest. We obtained analyzable metaphases of all 36 tumors (100%). One or more chromosomally abnormal clones were observed in 80% of tumors. Common clonal chromosome gains (each occurring in six or more cases) included +1, +2, +3, +6, +7, +9, and +12. Common clonal chromosome losses (occurring in 12 or more cases) included -X, -4, -8, -11, -13, -15, -17, and -22. Common clonal structural abnormalities (occurring in four or more cases) involved regions 1p36, 1q32, 1q42, 3p13-->p26, 3q26-->q29, 7p22, 9q34, 11p13-p15, 17q21-->q23, 19p13.3, and 19q13.3. Trisomy 12 was noted as the sole anomaly in three of five borderline and grade 1 tumors. Two grade 2 tumors contained i(1q), -14, -15 and -22. The results suggest that the pathogenesis of borderline and low-grade tumors may differ from that of higher grade tumors. Two high-grade tumors had an apparent translocation between 17q21 and 19p13.3, two chromosome regions believed to be critical to ovarian carcinogenesis.  相似文献   

14.
15.
Loss of heterozygosity (LOH) on chromosome 11 is frequently altered in various epithelial cancers. The present study was designed to investigate LOH on chromosome 11 in microdissected samples of normal prostatic epithelium and invasive carcinoma from the same patients. For this purpose, DNA was extracted from the microdissected normal and tumor cells of 38 prostate cancers, amplified by polymerase chain reaction PCR and analyzed for LOH on chromosome 11 using 9 different polymorphic DNA markers (D11S1307, D11S989, D11S1313, D11S898, D11S940, D11S1818, D11S924, D11S1336 and D11S912). LOH on chromosome 11 was identified in 30 of 38 cases (78%) with at least one marker. Four distinct regions of loss detected were: 1) at 11p15, at loci between D11S1307 and D11S989; 2) at 11p12, on locus D11S131 (11p12); 3) at 11q22, on loci D11S898, D11S940 and D11S1818; and 4) at 11q23-24, on loci between D11S1336 and D11S912. We found 25% of the tumors with LOH at 11p15; 39% had LOH at 11p12; 66% had LOH at 11q22; and 47% had LOH at 11q23-24. These deletions at 11p15, 11p12, 11q22 and 11q23-24 loci were not related to the stage or grade of the tumor.  相似文献   

16.
A Portuguese kindred with autosomal dominant isolated primary hyperparathyroidism (HPT) that was associated with parathyroid adenomas and carcinomas was investigated with the aim of determining the chromosomal location of this gene, designated HPTPort. Leukocyte DNA from 9 affected and 16 unaffected members and 7 parathyroid tumors from 4 patients was used in comparative genomic hybridization (CGH), tumor loss of heterozygosity (LOH), and family linkage studies. The CGH studies revealed abnormalities of chromosomes 1 and 13, and the results of LOH studies were consistent with the involvements of tumor suppressor genes from these regions. Family segregation studies mapped HPTPort to chromosome 1q22-q31 by establishing linkage with eight loci (D1S254, D1S222, D1S202, D1S238, D1S428, D1S2877, D1S422, and D1S412) (peak two-point LOD scores = 3. 46-5.14 at 0% recombination), and defined the location of HPT Port to a 21 cM region flanked centromerically by D1S215 and telomerically by D1S306. Thus, HPTPort has been mapped to chromosome 1q22-q31, and a characterization of this gene will help to elucidate further the mechanisms that are involved in the development of parathyroid tumors.  相似文献   

17.
A 13q isodisomy in a balanced karyotype: 45,XY,-13,-13, + i(13)(q10) was found in cultured amniocytes studied because of advanced maternal age. The isochromosome was monocentric and a new mutation as both parents had normal chromosomes. Fetal blood was studied to exclude 13-trisomy mosaicism. All (100) lymphocytes studied had the same karyotype with i(13)(q10) as the amniocytes. To determine the origin of the isochromosome, six microsatellite markers from 13q were analysed: D13S175, D13S166, D13S162, AC224, COLAC1 and D13S122. The results indicated that the i(13)(q10) was of paternal origin and isodisomic. The father had a risk of 1/20 for being a carrier for an autosomal recessive, progressive brain disorder, variant late infantile neuronal ceroid lipofuscinosis (CLN5). The risk for the fetus for this disorder of chromosome 13 was excluded by haplotype analysis. A healthy child was born at week 40 of pregnancy, supporting the idea that there are no paternally imprinted genes on chromosome 13q. Analysis of extra embryonal tissue (four samples studied) revealed the same balanced karyotype with the i(13)(q10)pat chromosome. According to the cytogenetic and molecular studies, the origin of the isochromosome 13 could be a transverse centromere cleavage at the paternal meiosis II or at an early mitosis.  相似文献   

18.
We report on a familial three way translocation involving chromosomes 3, 6, and 15 identified by prometaphase banding and fluorescence in situ hybridisation (FISH). Two mentally retarded sibs with different phenotypic abnormalities, their phenotypically normal sister and mother, and two fetuses of the phenotypically normal sister were analysed. The terminal regions of chromosomes 3q, 6q, and 15q were involved in a reciprocal translocation, in addition to a paracentric inversion of the derivative chromosome 15. Conventional cytogenetic studies with high resolution GTG banding did not resolve this rearrangement. FISH using whole chromosome paints (WCPs) identified the chromosomal regions involved, except the aberrant region of 3q, which was undetectable with these probes. Investigation of this region with the subtelomeric FISH probe D3S1445/D3S1446 showed a balanced karyotype, 46,XX,t(3;15;6) (q29;q26.1;q26), inv der(15) (q15.1q26.1) in two adult females and one fetus. It was unbalanced in two sibs, showing two different types of unbalanced translocation resulting in partial trisomy 3q in combination with partial monosomy 6q in one patient and partial trisomy 15q with partial monosomy 6q in the other patient and one fetus. These represent apparently new chromosomal phenotypes.  相似文献   

19.
To clarify the role of the MEN1 gene in the tumorigenesis of sporadic adrenocortical tumors, we performed a molecular study on 35 adrenocortical lesions including 6 hyperplasias, 19 adenomas and 10 carcinomas. Loss of heterozygosity (LOH) of the MEN1 gene was assessed by PCR using an intragenic (D11S4946) and 2 flanking microsatellite markers (D11S4936, PYGM) and/or fluorescence in situ hybridization (FISH) with a 40-kb cosmid probe containing the MEN1 gene. The complete coding sequence of the MEN1 gene was screened for mutations using non-radioactive, PCR-based single-strand conformation polymorphism (SSCP) analysis and MDE heteroduplex gel electrophoresis. PCR-LOH and FISH analyses performed in 29 tumors (PCR-LOH in 4, FISH in 17 and both in 8 tumors) revealed allelic deletion of the MEN1 locus in 8 (27.5%) and at 11q13 in 9 (31%) tumors. Furthermore, the frequency of LOH at 11q13 was significantly higher in adrenocortical carcinomas (60%) than in benign lesions (11%). Mutation analysis of tumor samples revealed 9 polymorphisms in 7 tumors (S145S, R171Q, R171Q together with L432L) but no mutations, with the exception of one adrenocortical adenoma. The latter tumor contained a somatic E109X stop codon mutation in exon 2 and a 5178-9G-->A splice mutation in intron 4, which was also detectable in various nontumorous tissues and blood indicative of a germ-line mutation. The patient, who had no clinical signs or family history of MEN1, later also developed a neuroendocrine carcinoma (atypical carcinoid) of the lung. Our findings indicate that inactivating mutations of the MEN1 tumor-suppressor gene appear not to play a prominent role in the development of sporadic hyperplastic or neoplastic lesions of the adrenal cortex and that the newly reported 5178-9G-->A splice mutation in intron 4 might cause a variant of the MEN1 phenotype.  相似文献   

20.
An allelotype covering all autosomes was constructed for the embryonal form of childhood rhabdomyosarcoma (ERMS) in order to identify regions encompassing tumorsuppressor genes (TSG) involved in ERMS. Thusfar most studies were focussed on chromosome 11p15.5, which frequently shows loss of heterozygozity (LOH) in embryonal tumors like RMS and Wilms' tumor (WT). In this study we show that, besides LOH of chromosome 11p15.5 (72%), LOH of chromosome 16q was present in 54% of the tumors analysed. Delineation of these two regions shows that the smallest region of overlap (SRO) for chromosome 11 was between D11S988 and D11S922. This region, estimated to be 7 cM and 3-5 Mb, is also the location of the putative Wilms' tumor WT2 TSG. It contains several genes including IGF2 and potential tumorsuppressor genes like H19 and p57kip2, which might contribute to the carcinogenesis of RMS. Analysis of chromosome 16q LOH defined the SRO between D16S752 and D16S413. LOH of chromosome 16 is also found in other tumors, including WT. Our data suggest that genes involved in the development of RMS and WT may not only be similar for chromosome 11 but also for chromosome 16.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号