首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
SLon立环脉动高梯度磁选机分选细粒弱磁性矿物具有富集比大、回收率高、磁介质不易堵塞、设备作业率高的优点.福建龙岩某选厂采用弱磁-强磁-再磨-强磁的工艺流程分选弱磁选氧化铁矿,该流程中,两台Slon-1 500磁选机分别用于粗选和扫选作业,流程指标为:给矿品位47.02% Fe,铁精矿品位60.14% Fe,铁回收率81.69% Fe.Slon磁选机在该流程中的成功应用,为该矿创造了较好的经济效益.  相似文献   

2.
1985年6月在法国戛纳召开的第十五届国际选矿会议上,宣读和交流磁选论文十一篇,包括弱磁场磁选一篇,高梯度磁选七篇,超导磁选三篇。现仅就磁分离设备论文的有关论述和信息加以综述介绍。 一、弱磁场磁选机——圆筒-平板干式磁选机 波兰M.BROZEK等从降低强磁性矿物在磁选过程中的磁絮凝作用,提高磁性产品的质量出发,在现有的交变磁场的平板磁选机和鼓型磁选机的基础上,通过对平板与圆筒之间空隙中的磁场和磁力的分析,设计  相似文献   

3.
午汲选矿厂尾矿中有半假象赤铁矿、假象赤铁矿和赤铁矿等弱磁性铁矿物。尾矿含铁一般为14~15%。这些铁矿物采用一般弱磁筒磁选机选别是难于回收的。过去有关单位进行了不少试验研究工作,均未取得良好效果,因此大量弱磁性铁矿物长期地随尾矿  相似文献   

4.
前言关于多梯度磁选机国内外均有专文论述。午汲选厂试制和采用多梯度磁选机回收尾矿中的弱磁性铁矿物,过去曾有报道。为正确估价其作用,充分发挥其效果,有进一步探讨之必要。邯邢冶金矿山管理局午汲选矿厂1966年建厂,投产初期处理矿石以磁山矿石为主(1975年后处理部分符山矿石),属矽卡岩型磁铁矿,而且是堆积多年的贫铁矿,受到强烈的氧化,含有相当一部分半假象赤铁矿、假象赤铁矿,少量赤铁矿、褐铁矿,部分脉石已氧化为粘土。原用普通弱磁选机选别磁山矿石,磁选尾矿品位高,含铁15~18%,金属回收率低约60—70%。这部份尾矿自流放入南洺河床,自然沉淀冲洗堆积,品位经重力富集含铁25%左右,数量有百余  相似文献   

5.
甘肃某难选弱磁性铁矿储量巨大,品位较低(地质品位TFe27.6%左右,采出品位TFe23%~24%)。为提高矿石入选品位,在不同粒度下进行了滚筒式强磁选机和辊带式强磁选机预选对比实验室试验研究,在实验室试验的基础上进行半工业试验,以确定开发利用该矿石的合理预选工艺技术方案。在保证预选总尾矿TFe品位低于15%的条件下,可以将预选粗精矿品位提高5.47个百分点,尾矿含铁品位仅为13.70%,提高了矿石入炉焙烧的品位。  相似文献   

6.
针对我国弱磁性矿石选矿效率低,强磁选设备存在磁场强度低、磁介质易堵塞、回收率低、维修难度大等重大技术难题。研究提出了微细粒弱磁性矿粒在综合力场中的动力学方程和影响弱磁性矿物选矿指标的关系方程式等一系列磁选机设计方面的理论问题;在装备设计中通过独特的铠装、水内冷磁系,减少漏磁,获得了1.0 T以上磁场强度,实现了强磁选机节能;研发了棒状磁介质及其优化排列结构,解决了强磁选机易堵塞问题;发明了分选大颗粒物料(2~5 mm)的强磁选机,解决了湿式强磁选机仅能处理小于1 mm物料的难题;发明了干式振动高梯度磁选机,使强磁选从湿式分选扩大到干式分选。SLon系列强磁选机已有30多种型号,单台设备日处理量可达10 000 t。研究提出了强磁选选矿的新工艺,实现了SLon系列强磁选机的大规模工业应用。  相似文献   

7.
SHP 湿式强磁选机自六十年代初研制以来,发展很快,对选别弱磁性矿物效果较好,已有不少铁矿矿山用来分选难选的红铁矿及矿泥。湘潭锰矿的原生碳酸锰矿石或次生氧化锰矿石,比磁化系数在110×10~(-6)和50×10~(-6)厘米~3/克,均属弱磁性矿物,可考虑使用该磁选机进行分选,对提高产品质量和经济效益具有很大意义。  相似文献   

8.
研究了应用磁选机去除粉煤灰中磁性铁.利用粉碎机粉碎试样,在粉煤灰的粒度为0.074 mm时,磁场强度为744 kA.m-1时,磁选次数为3次的条件下,将粉煤灰中的铁含量(质量分数)由6.27%降到了2.41%,去除率达到61.51%,回收率为92.11%.该方法快速准确,操作简便,可用于粉煤灰中磁性铁的去除.  相似文献   

9.
第一部分 铁控制方法的选择 [1] 湿法冶金过程中控制铁的矿物学综述(T.T.Chon等) 作为地壳中第四个含量最高的元素,铁在铜,镍锌,铅、铝、锰和钛的矿石及矿物中是一种常见组份,也是许多已知铁矿物和大多数伴生杂质中的主要成份。本文提供并讨论了矿石中铁矿物及各种类型矿石中铁杂质的含量及性质。说明了矿物结构及粒度对除铁的重要性,并以闪锌矿-黄铁旷,镍黄铁矿-磁黄铁矿为例作了阐述。在湿法冶金过程中,铁一般以Fe_2O_3、FeO·OH或黄钾铁矾化合物被除去,因此讨论了这些化合物的矿物学,晶体化学及固体置换。事实证明,自然界中存在大量铁的硫酸盐、砷酸盐、磷酸盐化合物,因此讨论了沉淀铁时这些化合物在控制杂质方面所起的作用。最后,讨论了各种铁矿物的相对稳定性,并以此来判断贮水池中各种铁沉淀物的稳定性。  相似文献   

10.
根据玉溪某低品位铁矿的矿石特点,进行了直接磁选试验、永磁干式磁选机预先抛尾-磁选的工艺流程试验,这两个工艺流程均可以有效回收矿石中的铁,最终确定了矿石适宜的选矿工艺,并得到了铁品位57.12%、铁回收率50.12%铁精矿的选矿指标。  相似文献   

11.
高岭土由于具有良好的物理化学性能,用途十分广泛,贵州省高岭土矿大部发为含炭硬质高岭土矿,不能直接利用,开发利用贵州硬质高岭土,太要在于脱除矿物中的铁、炭及锰等,提高白度及综合性能,使其达到可利用价值;通过试验研究,贵州硬质高岭土矿,适于采用重选-焙烧-化学漂白除铁的工艺流程来加工处理,可以得到不同级别的高岭土产品。  相似文献   

12.
The recycling application of bauxite residual is limited by its high content of iron, unfortunately, the complicated embedding feature of haematite makes it quite difficult to be removed efficiently and cleanly. In this paper, the process of selective reducing-magnetic separation without acid leaching is adopted to remove iron from bauxite residual. Different parameters such as carbon mass addition, roasting temperature, reduction time, magnetic field intensity and grain size on the iron removing ratio and iron yield are systemically investigated. It is indicated that haematite in bauxite residual is reduced to magnetite basically after 700°C roasting for 2.5?h by 1.0 wt-% carbon powder reducing, and the optimal conditions of magnetic separation are magnetic intensity of 235?mT and grain size of +150?μm, respectively. After selective reduce roasting–magnetic separation, iron content in the bauxite residual is sharply decreased from 7.98 to 1.34%, the iron removal ratio is 83.21%, and iron-rich magnetic concentrate contains about 30.48% iron, meanwhile, 87.03% of the iron in bauxite residual is enriched in the magnetic concentrate. The process is characterised by efficient and clean removal composite iron impurities from bauxite residual without using acid leaching.  相似文献   

13.
对某选铁尾矿中的白钨进行了综合回收试验研究。根据试料性质,采用了弱磁选-重选-强磁选、弱磁选-重选、弱磁选-重选-浮选等3种方案进行白钨选矿试验,最终确定弱磁选-重选-浮选工艺。试验结果为铁精矿品位Fe65.89%,回收率22.07%,钨精矿品位WO351.64%,回收率为10.94%的分选指标。  相似文献   

14.
Abstract

Most of the naturally occurring iron, titanium and chromium bearing minerals which accompany industrial minerals, such as quartz, feldspar, nepheline syenite, spodumene, andalusite, vermiculite, etc., exhibit either ferromagnetic or paramagnetic properties and can therefore be removed by means of magnetic treatment.

Magnetic separators powered by either permanent magnets or electromagnetic coils, have been widely applied to removing iron titanium and chromium bearing impurities from industrial minerals. The removal of these impurities have significantly improved the quality of the industrial minerals processed.

The early magnetic separators used for mineral processing were exclusively resistive electromagnets using water cooled copper coils. About 9 years ago, superconducting magnets made their first entry into this application and since that time their number and popularity has steadily increase.

Equally importantly the development of superconducting magnets systems has brought about notable improvements with regards to process economics, ease of installation and separation flexibility which make it practical for a great number of kaolin producers to benefit from this technology.

Dissolved metals from industrial effluents are usually precipitated as hydroxides or sulfurs. The precipitate is then decanted and filtered with the final cake stored in basins or lagoons. Magnetic separation (or magnetic filtration) can be used to decrease the separation time between mud and liquid. The conventional method consists of doping the mud with magnetic seeds (fine magnetite or hematite) which are incorporated in the preexisting flocculates.

A magnetic carrier can also be generated by coprecipitation of the element to be removed with ferric chloride, ferric nitrate or with a mixture of FeII /FeIII.

Magnetic filtration is also greatly improved by the use of a superconducting magnetic separator.

This article describes a superconducting filtration prototype and presents the main results of magnetic purification obtained in mineral processing and with synthetic solutions of cadmium, zinc, iron, ? and industrial effluents.  相似文献   

15.
云南某钛选厂的生产工艺流程是重选一弱磁联合流程,重选采用螺旋溜槽回收钛,螺旋溜槽尾矿经过弱磁选得到钛磁铁矿,其含TiO2 22.86%,含Fe50.80%。此部分产品一般以低价销售,资源利用率不高。为此,对该钛磁铁矿进行详细的浮选、磁选、重选及联合分选工艺的提铁收钛选矿试验研究,得到了高品位的铁精矿和合格的钛精矿产品,提高了选厂的经济效益。  相似文献   

16.
在对某铜尾矿多元素、矿物组成和铁物相分析结果基础上,针对磁性铁和钙铁榴石分别进行了磁选、重选探索试验,重-磁和弱磁-强磁联合回收工艺对比研究。结果表明:采用弱磁-强磁联合工艺,磁性铁品位65.40%、回收率11.12%,钙铁榴石精矿品位为92.88%,回收率74.12%,综合产率达到70.93%。  相似文献   

17.
文章介绍了湖南某地铁矿体的选矿工艺矿物学和选矿试验研究。研究结果表明,采用弱磁选一强磁选试验流程可从含铁为30.17%的试样中获得弱磁选铁精矿产率为20.81%,含铁67.42%,铁回收率为46.50%;强磁选铁精矿产率为15.50%,含铁59.71%,铁回收率为30.68%。铁总回收率为77.18%的良好指标。  相似文献   

18.
孙平  樊丽琴  贾艳 《包钢科技》2014,40(1):22-26
文章对白云鄂博矿中硫的分布情况进行考察,并进行降硫的系列试验研究,可使白云鄂博氧化矿弱磁选铁精矿中的w(S)由1.02%降到0.33%,铁精矿产率损失5.33%;磁铁矿弱磁选铁精矿中的w(S)由1.72%降到0.48%,铁精矿产率损失3.28%,基本达到课题目标(铁精矿中w(S)0.4%,铁精矿产率损失小于8%),但降硫后产生的硫精矿(产率较高,硫品位低、铁品位高)再处理尚无有效的办法。  相似文献   

19.
 研究了常化对CSP流程生产的wSi=1.6%的无取向电工钢组织、织构和成品磁性能的影响。结果表明,经CSP流程生产,且在相同的冷轧及退火制度下,经1000℃×2min常化处理的wSi=1.6%的无取向电工钢热轧板,其最终退火成品的铁损P15/50比不常化试样下降了10.5%,磁感B50比不常化试样提高了2.5%;常化使wSi=1.6%的无取向电工钢成品的平均晶粒尺寸增大,成品铁损P15/50相应减小;同时,常化使wSi=1.6%的无取向电工钢成品中高斯织构的强度增加,γ纤维织构的强度减弱,这有利于成品磁感B50的提高。  相似文献   

20.
酒钢本部尾矿坝现堆存铁品位21%~24%的尾矿约7 000万t,为使尾矿中的铁资源得以回收利用,开展了酒钢尾矿制粒-磁化焙烧-干选抛废-磨矿磁选试验研究,结果表明,在煤粉与矿样的质量比为1.5%,焙烧温度为810℃,焙烧时间为30 min,焙烧产物磨矿细度为-0.074 mm占80%,弱磁选磁场强度为125 m T条件下,可获得铁品位为56.13%、铁回收率为72.87%的铁精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号