首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
研究了真空环境中TA32钛合金在950℃,初始变形速率在5.32×10-4~2.08×10-2s-1条件下的超塑性变形行为。结果表明,不同应变速率条件下,板材的流变应力曲线特征和显微组织演变呈现显著不同。在应变速率较低条件下(5.32×10-4 ~3.33×10-3s-1),拉伸真应力-应变曲线呈传统超塑变形的稳态流动特征,变形后的板材中初生α相晶粒尺寸较大;在高应变速率(8.31×10-3 s-1~2.08×10-2 s-1)条件下,拉伸真应力-应变曲线中流变应力增大到峰值后快速单调递减直到断裂,变形后的板材中初生α相发生动态再结晶,晶粒尺寸与低应变速率条件拉伸的板材相比显著细化。在950℃下,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间,当应变速率为5.32×10-4s-1时,板材具有最佳的超塑性性能,拉伸延伸率可达519%。断裂区分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

2.
采用应变速率循环法(基于时间间隔)研究了TA15合金的超塑性。在变形温度分别为850,900,950℃,应变速率范围为5×10^-6~5×10^-4s^-1的实验条件下,考察了工艺参数对流变应力、m值及其超塑性的影响。结果表明,TA15合金具有较好的超塑性,最佳变形温度为900℃,伸长率为846%。  相似文献   

3.
研究了TA15钛合金超塑性变形后显微组织的演变及变形条件对超塑性变形行为的影响。结果表明:在变形温度为850~950℃、应变速率为1×10-4~1×10-3s-1超塑性拉伸时,TA15钛合金表现出良好的超塑性变形性能,且在900℃,5.5×10-4s-1变形条件下,延伸率最大为803.3%。在应变速率不变的条件下,随着变形温度的升高,α相晶粒尺寸增大,β相含量增加,晶粒仍保持细小、等轴状态。在变形温度一定时,随着应变速率的降低,α相晶粒尺寸增大,β相含量增加。同时变形程度对显微组织有显著影响,拉伸后不同部位的显微组织均有一定程度的粗化,变形程度越大,晶粒粗化的越明显,并伴有α相到β相的转变。变形过程中,加工硬化与变形软化相互竞争,表现为传统超塑变形的稳态流动特征。  相似文献   

4.
研究了Ti-55钛合金板材在应变速率为8.30×10~(-4)~1.32×10~(-2)s~(-1)、变形温度885~935℃条件下的超塑性拉伸变形行为和显微组织演化。结果表明:细晶Ti-55钛合金板材表现出良好的超塑性,在温度925℃和应变速率为6.64×10~(-3)s~(-1)条件下,最大延伸率可达987%,即使在1.32×10~(-2)s~(-1)的高应变速率条件下也获得了872%的断裂延伸率。在应变速率不变的条件下,变形温度的升高,动态再结晶程度增大,有利于细小等轴的α相晶粒发生相转变。变形速率的不断降低,α相晶粒容易聚集并长大,α相含量减少,β相含量增加,材料塑性反而有所下降。此外,在超塑性变形的过程中,变形区域晶粒长大速度要大于夹头区域,随着变形程度的增大,α相的含量也随之减少,Ti-55材料的变形能够促使晶粒的聚合长大和α相的相转变。  相似文献   

5.
在300 K及20 K、不同应变速率下对CT20钛合金板材进行单向拉伸,利用扫描电镜、透射电镜等观察拉伸应变组织及断口形貌,揭示了应变速率对CT20钛合金孪生变形行为的影响规律。结果表明:在300 K下,应变速率的提高使CT20钛合金板材的强度提高,延伸率降低;20 K下,应变速率的提高使CT20钛合金板材的强度和延伸率均下降。在300 K、应变速率高于6.67×10-1s-1和20 K、应变速率低于6.67×10-3s-1的条件下,CT20钛合金板材的变形均为滑移和孪生共同作用。20 K下,CT20钛合金拉伸应变速率超过6.67×10-3s-1时,孪生变形受到抑制,材料的延伸率迅速降低。  相似文献   

6.
对不同温度下退火处理后的细晶TC4合金板材进行超塑性拉伸变形,研究该合金在750~850℃,应变速率为3×10-4~1×10-3 s-1条件下的超塑性拉伸变形行为,分析晶粒尺寸、变形温度和β相含量对合金性能的影响。结果表明:退火后的(α+β)型细晶Ti-6Al-4V合金表现出良好的超塑性,并且晶粒越细,最佳超塑性变形温度越低。晶粒直径为2.5μm、β相含量(体积分数)为9.6%的TC4合金在温度为800℃、应变速率为1×10-3 s-1的变形条件下,伸长率最大,达到862%。不同晶粒度合金的应变速率敏感系数m均随变形温度升高先上升后下降,最高达0.61。β晶粒处于α晶粒三叉晶界处,升温或拉伸变形时聚集并沿α晶界长大,形成细长的β晶粒并逐渐变粗大,因此在900℃以上高温下合金的超塑性变形能力降低。  相似文献   

7.
置氢Ti-6Al-4V钛合金超塑性研究   总被引:4,自引:2,他引:2  
通过采用Gleeble-1500D热模拟试验机进行超塑性变形试验,研究变形温度和应变速率对置氢TC4合金超塑变形性能的影响,利用XRD,SEM和TEM分析热氢处理改善钛合金超塑性能的机制.结果表明:置氢可降低超塑成形流变应力、变形温度,提高应变速率和m值;但只有适量的氢才有利于改善钛合金超塑性,即存在一个最佳置氢量;置氢0.35%H(质量分数)的TC4合金在800℃和3×10-3 s-1条件下仍有一定超塑性.分析表明,置氢钛合金超塑变形过程除晶粒转动和滑动机制外,位错滑移和孪生也作为辅助超塑变形机制.  相似文献   

8.
采用TA15钛合金板材,研究了在860~980℃,8.3×10-4~1.7×10-3s-1条件下进行的超塑拉伸性能。结果标明:随着变形温度的升高,延伸率先增加后降低;在940℃、应变速率为1.7×10-3s-1、垂直轧制方向获得最大延伸率为1370%。随着变形温度的升高和拉伸速度的降低,等轴α晶粒尺寸增大。变形温度为940℃时诱发次生α相的析出,少量的层片组织对提高延伸率具有一定的作用。  相似文献   

9.
TNW700钛合金是我国自主研发的近α型、可在700℃短时使用的高温钛合金。针对TNW700合金板材在温度为890~950℃、恒应变速率为0.0100~0.0005 s~(-1)下的单向超塑拉伸变形行为进行了研究,利用Zener-Hollomn参数和Arrhenius方程建立了TNW700钛合金的峰值应力本构方程。结果表明:TNW700钛合金的超塑性变形行为与普通钛合金不同,其加工硬化阶段较长,且温度越高、应变速率越低,动态硬化的效果更加明显,远高于再结晶软化程度,晶粒尺寸的增加是导致加工硬化的主要原因。在950℃,0.0005 s~(-1)条件下获得的最大延伸率为933%。所建立的峰值应力方程为σ_p=17.414[1.047(lnε+540210/RT)-46.587],其变形激活能Q=540.21 k J·mol~(-1)。在较低温度条件下变形,在断口附近由于应变速率高和变形温度低的双重作用在晶界三角区产生应力集中使晶界滑移变得困难而导致有孔洞产生。随着变形温度的升高,β相含量和尺寸逐渐增加,高温、高应变速率条件下有次生α相析出,采用电子探针分析(EPMA)发现β晶粒微区成分的变化是次生α相产生的主要原因。  相似文献   

10.
通过热/力模拟实验对TA15钛合金高温塑性变形流变应力进行了研究.实验结果表明:应变速率和变形温度的变化显著影响合金流变应力的大小,流变应力随变形温度的升高而降低,随应变速率的提高而增大.根据实验数据,计算了合金的高温塑性本构方程常数,并采用Zener-Hollomon参数的双曲正弦函数形式描述了合金的流变应力行为.  相似文献   

11.
采用Gleeble-3500热模拟试验机进行热压缩试验,研究了Cu-3.6Ni-1.0Si合金在变形温度为500~950℃、变形速率为0.01~10s。状态下的热塑性变形行为。根据应力.应变数据,构建了cu.3.6Ni-1.0Si合金热塑性变形过程中流变应力与变形温度、变形速率等加工参数之间的本构关系方程。经过参数拟合与优化,得到Cu-3.6Ni-1.0Si合金在650~950℃之间、热变形过程的应力.应变速率关系方程。试验结果及分析表明,Cu-3.6Ni-1.0Si合金加热保温及开轧温度应以950℃为上限,终轧温度以高于7000C为宜,不能低于650℃,热轧加工变形速率范围在0.1~10s-1之间。  相似文献   

12.
The uniqueness of stress-strain rate relation in superplastic deformation of the Pb-Sn eutectic alloy for different grain sizes and test temperatures has been explored after subjecting the deformation processed alloy to a standard tensile prestrain. About 30 pct elongation at 421 K was found to eliminate the mechanical and microstructural instabilities that are characteristic of the as-worked material. After this prestraining, the flow stress was uniquely dependent on strain rate for a given grain size and test temperature, irrespective of the cross head speed, the path through which a particular strain rate is achieved, or the strain.  相似文献   

13.
14.
3104铝合金热变形流变应力模型   总被引:1,自引:0,他引:1  
陈文  林林  邓成林 《铝加工》2007,(5):22-24
采用等温压缩试验,研究了3104铝合金在应变速率为0.001-1s^-1、变形温度为573-773K条件下的流变应力行为。结果表明,3104合金流变应力对应变速率和变形温度十分敏感,合金高温塑性变形时存在稳态流变特征,并建立了合金热变形流变应力模型。  相似文献   

15.
针对随炉成形及到温成形2种主要的热成形工艺,通过高温拉伸试验,从TA32钛合金热成形流变性能及组织演变的角度出发,首先研究温度、变形速率、应变量等共性因素的影响,再对比分析2种热成形工艺下不同升温速率和冷却方式等特性因素的影响。设计两因素两水平工艺试验,分析不同高温润滑剂及热成形条件下TA32钛合金的氧化行为。结果表明:温度为800℃、应变速率为0.001 s-1、保温时间为30 min、应变量为0.45~0.6,且选用到温热成形(升温速率为800℃/5 min,空冷)时,TA32钛合金的变形抗力较低,塑性较好,晶粒较为均匀,β相等轴晶粒较多,综合成形性能较好;到温成形条件下,选用立方氮化硼(CBN)作为高温润滑剂时,成形件的氧化程度最低。综合考虑,TA32钛合金板材最优高温成形方案为到温成形工艺并采用CBN作为高温润滑剂。  相似文献   

16.
This study is concerned with the effects of microstructural modification on superplastic deformation characteristics of a rapidly solidified (RS) Al-3Li-1Cu-0.5Mg-0.5Zr (wt pct) alloy. This Al-Li alloy has a very fine grain structure desirable for improved superplasticity. The results of superplastic deformation indicated that the alloy exhibited a high superplastic ductility, e.g., elongation of approximately 800 pct, when deformed at temperatures above 500 °C and at the strain rates of 10−2/s to 10−1/s. Such a high strain rate is quite advantageous for the practical superplastic forming application of the alloy. Stress-strain rate curves were obtained by performing a series of load relaxation tests in the temperature range from 460 °C to 520 °C in order to examine the superplastic deformation behavior and to establish its mechanisms. The stress-strain rate curves could be separated into two parts according to their respective physical mechanisms, i.e., grain matrix deformation and grain boundary sliding, as was proposed in a new superplasticity theory based on internal deformation variables. The microstructural evolution during superplastic deformation was also analyzed by using transmission electron microscopy. During superplastic deformation, grains were kept fine and changed into equiaxed ones due to the presence of fine secondary phase particles and the continuous recrystallization due to the development of subgrains. Consequently, the rapidly solidified (RS) alloy showed much improved superplasticity compared to the conventional ingot cast 8090 alloy.  相似文献   

17.
Ni-25Al-15Cr (atomic percent, %) alloy was directionally solidified (DS) under argon atmosphere in an Al2O3-SiO2 ceramic mold by standard Bridgman method. The microstructure of the as-fabricated alloy was studied using optical microscope, X-ray diffractometer, and scanning electron microscope. The alloy consisting of dendritic β-NiAl phase, interdendritic γ/γ′ phase, and transient layer γ′ phase, has been investigated. This alloy exhibits superplastic deformation behavior at 1 273-1 373 K over an initial strain rate range of 8.35×10-4-1.67×10-2 s-1. The maximum elongation of 280% with strain rate sensitivity index m=0.22 was obtained at the temperature of 1 323 K and an initial strain rate of 8.35×10-3 s-1. Transmission electron microscopy (TEM) observations indicate that the superplastic deformation stems from the balance between high resistance (by dislocation sliding) and strain softening (by dynamic recovery and recrystallization).  相似文献   

18.
超塑性奥氏体-铁素体双相不锈钢00Cr25Ni7Mo3N的研制   总被引:1,自引:0,他引:1  
张兰  王立新  任学平 《特殊钢》2005,26(6):44-46
通过电弧炉-电渣重熔工艺开发研制了成分为(%):0.021C,24.16Cr,7.21Ni,2.87Mo,0.17N,0.48Cu超塑性双相不锈钢00Cr25Ni7Mo3N。试验结果表明,00Cr25Ni7Mo3N超塑性双相不锈钢的耐孔蚀性和耐缝隙腐蚀性远高于传统的304L和316L奥氏体不锈钢。在变形温度960℃、应变速率2×10-3/s时,00Cr25Ni7Mo3N超塑性双相不锈钢的最高延伸率为960%,该钢超塑性变形的均匀性优于TC4钛合金,可显著减轻构件的重量。  相似文献   

19.
利用Gleeble-1500热模拟实验机,对2524铝合金进行高温等温压缩试验,实验变形温度为300~500℃,应变速率为0.01~10 s-1的条件下,研究了2524铝合金的流变变形行为。结果表明:合金流变应力的大小跟变形温度和应变速率有很大关联,2524铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征,而峰值流变应力随变形温度的降低和应变速率的升高而增大;在流变速率ε为10 s-1,变形温度300℃以上时,应力出现锯齿波动,合金表现出动态再结晶特征。采用温度补偿应变速率Zener-Hollomon参数值来描述2524铝合金在高温塑性变形流变行为时,其变形激活能Q为216.647 kJ/mol。在等温热压缩形变中,合金可加工条件为:高应变速率(>0.5 s-1)或低应变速率(0.01 s-1~0.02 s-1)、高应变温度(440℃~500℃)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号