首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelial cell association with vascular basement membranes is complex and plays a critical role in regulation of cell adhesion and proliferation. The interaction between the membrane-associated 67-kd receptor (67LR) and the basement membrane protein laminin has been studied in several cell systems where it was shown to be crucial for adhesion and attachment during angiogenesis. As angiogenesis in the pathological setting of proliferative retinopathy is a major cause of blindness in the Western world we examined the expression of 67LR in a murine model of hyperoxia-induced retinopathy that exhibits retinal neovascularization. Mice exposed to hyperoxia for 5 days starting at postnatal day 7 (P7) and returned to room air (at P12) showed closure of the central retinal vasculature. In response to the ensuing retinal ischemia, there was consistent preretinal neovascularization starting around P17, which persisted until P21, after which the new vessels regressed. Immunohistochemistry was performed on these retinas using an antibody specific for 67LR. At P12, immunoreactivity for 67LR was absent in the retina, but by P17 it was observed in preretinal proliferating vessels and also within the adjacent intraretinal vasculature. Intraretinal 67LR immunoreactivity diminished beyond P17 until by P21 immunoreactivity was almost completely absent, although it persisted in the preretinal vasculature. Control P17 mice (not exposed to hyperoxia) failed to demonstrate any 67LR immunoreactivity in their retinas. Parallel in situ hybridization studies demonstrated 67LR gene expression in the retinal ganglion cells of control and hyperoxia-exposed mice. In addition, the neovascular intra- and preretinal vessels of hyperoxia-treated P17 and P21 mice labeled strongly for 67LR mRNA. This study has characterized 67LR immunolocalization and gene expression in a murine model of ischemic retinopathy. Results suggest that, although the 67LR gene is expressed at high levels in the retinal ganglion cells, the mature receptor protein is preferentially localized to the proliferating retinal vasculature and is almost completely absent from quiescent vessels. The differential expression of 67LR between proliferating and quiescent retinal vessels suggests that this laminin receptor is an important and novel target for future chemotherapeutic intervention during proliferative vasculopathies.  相似文献   

2.
3.
4.
Preretinal neovascularization and chronic retinal oedema are the two major sight-threatening complications that can occur during diabetic retinopathy. Ocular neovascularization is strongly associated with retinal ischaemia, and growth factors have been implicated in its pathogenesis. The ischaemic retina is assumed to secrete growth factors that stimulate residual vessels to proliferate. Interest has focused on basic fibroblast growth factor (bFGF), insulin-like growth factor-1 (IGF-1), platelet-derived growth factor (PDGF), transforming growth factor beta (TGF beta) and more recently vascular endothelial cell growth factor (VEGF). Histologic studies have demonstrated the presence of growth factor proteins and receptors and/or their mRNA, mainly VEGF, PDGF, and bFGF, in preretinal membranes of patients with proliferative diabetic retinopathy. Elevated intravitreal levels of IGF-1 and VEGF correlating with neovascular activity have been found in some patients. However, a direct causal relationship between ischaemia, growth factors and neovascularization has not been clearly demonstrated despite considerable research work. To date, the growth factor correlating most closely with neovascularization is VEGF. As many growth factors seem to be produced during the neovascular process, their specific inhibition probably will have limited effects. Laser photocoagulation of the retina has proved beneficial for regression of new vessels, probably through destruction of the ischaemic retina producing neovascular growth factors, and is currently the only treatment for proliferative diabetic retinopathy. Inhibition of IGF-1 by somatostatin analogs has produced unsatisfactory results. Other vascular inhibitors are currently being studied.  相似文献   

5.
Prior studies have identified Fibroblast Growth Factor-8 (Fgf8) as a possible proto-oncogene in mouse mammary tumorigenesis. We now report on the generation of two types of Fgf8 transgenic mice that each utilize the mouse mammary tumor virus (MMTV) promoter. The first transgene (MMTV-Fgf8b) results in the overexpression of the FGF8b isoform exclusively. Male and female MMTV-Fgf8b transgenic mice are viable and fertile. RNA for FGF8b is detected in mammary gland and salivary gland tissues of transgenic mice by Northern blot analysis. Nearly 85% of breeding transgenic female mice developed mammary lobular adenocarcinomas by 12 months of age, while no tumors developed in non-transgenic littermates. Salivary gland tumors occurred in some animals, always in association with mammary tumors. Several MMTV-Fgf8b transgenic mice had lung metastases at necropsy. The second transgene (MMTV-Fgf8) uses the entire Fgf8 gene and potentially encodes all FGF8 isoforms. Fgf8 is expressed by this transgene in several tissues in addition to those described above, notably the ovaries. The two MMTV-Fgf8 founders developed mammary ductal adenocarcinomas at five and eight months of age, and both displayed ovarian stromal hyperplasia. The founders expressing either transgene did not successfully nurse their pups. These results demonstrate that production of FGF8b, and possibly other FGF8 isoforms, in the mammary and salivary glands contributes to oncogenesis, and that ovarian expression results in stromal hyperplasia.  相似文献   

6.
Vascular endothelial growth factor (VEGF) is an endothelial cell-specific angiogenic and permeability-inducing factor that has been implicated in the pathogenesis of diabetic retinopathy. In the present study, the localization and magnitude of VEGF, VEGF receptor-1 (VEGFR-1), and VEGF receptor-2 (VEGFR-2) gene expression were examined in the eye of streptozotocin-induced diabetic rats using quantitative in situ hybridization. VEGF protein was also examined by immunohistochemistry. Abundant VEGF mRNA and protein were present in the retinae of control rats. In the retinae of diabetic rats, VEGF gene expression was increased compared with control animals (p = 0.001). The increase in VEGF mRNA was noted in the ganglion cell layer and inner nuclear layer but not in the pigment epithelium of the retina. VEGF was also detected in blood vessels, ciliary body, and lens epithelium in both control and diabetic rats. The distributions of VEGFR-1 and VEGFR-2 were similar in both control and diabetic rats. VEGFR-1 mRNA was present beneath the inner limiting membrane and in the ganglion cell layer, inner nuclear layer, outer plexiform layer, and outer limiting membrane of the retina; it was also detected in blood vessels, the ciliary body, and the cornea. The magnitude and distribution of ocular VEGFR-1 mRNA were not affected by experimental diabetes. Expression of VEGFR-2 mRNA was noted in the inner nuclear layer and pigment epithelium of the retina and in blood vessels. An increase in VEGFR-2 mRNA in the diabetic retina was restricted to the inner nuclear layer. The presence of VEGF and its receptors in the control retina suggests a physiologic role for VEGF within the eye. The changes in retinal expression of VEGF and VEGFR-2 in association with diabetes suggest a role for this pathway in diabetic retinopathy.  相似文献   

7.
8.
As retinal histogenesis proceeds there is a pronounced increase in the expression of fibroblast growth factor (FGF), reaching its maximum in the mature retina and largely in terminal differentiated retinal neurons. Recent in vivo evidence suggests that exogenous FGF functions as a differentiation and survival factor for a wide variety of cell types including CNS neurons and that endogenous FGF may perform similar functions. We have examined the consequences of selectively and independently inhibiting FGF1 or FGF2 expression using antisense oligonucleotides in embryonic chick retinal cells, differentiating in vitro. Whether FGF1 or FGF2 expression was inhibited the results were the same: a marked reduction in neuronal photoreceptor cells differentiation, an increase in programmed cell death, but no effects on cell proliferation. Even although these two related factors promote the same final effect on retinal cells, namely, neuronal differentiation and survival, their normal combined activities or levels appear to be important in achieving this effect. Stimulation with either exogenous FGF1 or FGF2 served to increase endogenous levels of both FGF1 and FGF2 and reversed the effects of antisense blockade of either FGF1 or FGF2. Our data suggest that although other sources of FGF exist within the eye, the function of endogenous FGF in differentiating retinal neurons may be to stimulate their differentiation and promote their survival.  相似文献   

9.
10.
Choroidal neovascularization (CNV) is the major cause of severe visual loss in patients with age-related macular degeneration. Laser treatment is helpful for a minority of patients with CNV, and development of new treatments is hampered by a poor understanding of the molecular signals involved. Several lines of evidence have suggested that basic fibroblast growth factor (FGF2) plays a role in stimulating CNV. In this study, we tested this hypothesis using mice with targeted disruption of the FGF2 gene in a newly developed murine model of laser-induced CNV. One week after krypton laser photocoagulation in C57BL/6J mice, 34 of 60 burns (57%) showed fluorescein leakage and 13 of 16 (81%) showed histopathological evidence of CNV. At 2 weeks, CNV was detected in 9 of 10 burns (90%) in which a bubble had been observed at the time of the laser treatment. Electron microscopy showed fenestrated vessels with large lumens within choroidal neovascular lesions. Two weeks after laser-induced rupture of Bruch's membrane, 27 of 36 burns (75%) contained CNV in FGF2-deficient mice compared with 26 of 30 (87%) in wild-type control mice, a difference that is not statistically significant. This study demonstrates that FGF2 is not required for the development of CNV after laser-induced rupture of Bruch's membrane and provides a new model to investigate molecular mechanisms and anti-angiogenic therapy in CNV.  相似文献   

11.
PURPOSE: To determine if vascular occlusion and nonperfusion is associated with the outer retinal atrophy, retinopathy, and choroidopathy (chorioretinopathy) that occurs in the alpha H beta S[beta MDD] and alpha H beta S [alpha MD beta MDD] transgenic mouse models of sickle cell disease. METHODS: Mice from the alpha H beta S[beta MDD] and alpha H beta S[alpha MD beta MDD] transgenic mouse lines that express high levels of human beta S globin were anesthetized and administered horseradish peroxidase (HRP) intracardially. After 1 min, the animals were sacrificed, and the retina from one eye was excised, fixed, and developed in diaminobenzidine (DAB). The contralateral eye was fixed, embedded whole in glycol methacrylate, and HRP developed in 2.5 microns sections. RESULTS: HRP reaction product (HRP-RP) and stained erythrocytes (RBCs) (due to endogenous peroxidase) were diffusely distributed within all vascular lumens in flatmount retinas from control animals (littermates homozygous for the mouse Beta Major deletion not expressing the beta S transgene). In 42.5% of the transgenic mice expressing beta S without any proliferative retinopathy, many blood vessels contained RBC plugs and lacked lumenal HRP-RP. In addition to packed RBCs, fibrin was sometimes present at sites of occlusion. In sections from whole eyes of the same animals, foci of photoreceptor degeneration were associated with areas of choriocapillaris nonperfusion (lumen that lacked HRP-PR). In areas with normal photoreceptors, the choriocapillaris appeared perfused (HRP-RP was present). In animals with proliferative chorioretinopathy, some neovascular formations lacked luminal HRP-RP, suggesting autoinfarction. CONCLUSIONS: Nonperfused retinal and choroidal vessels were observed in mice from the alpha H beta S[beta MDD] and alpha H beta S[alpha MD beta MDD] lines without retinal and choroidal neovascularization, whereas, all mice with neovascularization had nonperfused areas. Furthermore, small foci of PR loss were associated with areas of nonperfused choriocapillaris. These results suggest that sickle cell-mediated vaso-occlusions are an initial event in the chorioretinopathy and outer retinal atrophy that occurs in these models.  相似文献   

12.
PURPOSE: To assess the role of astrocytes in controlling the growth of developing retinal vessels. METHODS: Growth of retinal vessels in the neonatal rat retina was examined in three conditions: normal development, cyclic hyperoxia, and normoxia (1 day 70% to 75% oxygen, 1 day room air for up to seven cycles from birth, and room air for up to 16 days), and direct hypoxia (10% oxygen from postnatal day 3 [P3]). Retinas were examined as wholemounts labeled for astrocytes, microglia, and blood vessels and in some experiments for the fragmentation of DNA characteristic of apoptosis. RESULTS: In normoxia, superficial retinal vessels formed to the processes of astrocytes. In cyclic hyperoxia, the depletion of superficial retinal vessels and subsequent neovascularization described by others were confirmed. The neovascularization was preceded by the depletion by apoptotic death of the astrocyte population, first between vessels but eventually breaching the glia limitans along vessels. The earliest forms of neovascularization resembled microaneurysms, each protruding through a defect in the glia limitans of a capillary. Neurons of the ganglion cell layer survived. Direct hypoxia from P3 caused hypertrophy of superficial vessels. Between P3 and P6, some vessels accelerated past the still-spreading astrocytes, often growing out of the retina into the vitreous humor. Direct hypoxia also caused astrocyte degeneration, but capillaries retained astrocyte investment and were not the site of vascular damage. By P8, breaches in the astrocytic glia limitans became prominent but were restricted to large veins. At such breaches, bleeding into the vitreous humor was common. CONCLUSIONS: Retinal vessels normally develop in close association with astrocytes. Where that association is broken, preretinal vessels may grow or bleed into the vitreous humor. Astrocytes play important roles in constraining retinal vessels to the retina and in maintaining their integrity.  相似文献   

13.
14.
We have identified Math5, a mouse basic helix-loop-helix (bHLH) gene that is closely related to Drosophila atonal and Xenopus Xath5 and is largely restricted to the developing eye. Math5 retinal expression precedes differentiation of the first neurons and persists within progenitor cells until after birth. To position Math5 in a hierarchy of retinal development, we compared Math5 and Hes1 expression in wild-type and Pax6-deficient (Sey) embryos. Math5 expression is downregulated in Sey/+ eyes and abolished in Sey/Sey eye rudiments, whereas the bHLH gene Hes1 is upregulated in a similar dose-dependent manner. These results link Pax6 to the process of retinal neurogenesis and provide the first molecular correlate for the dosage-sensitivity of the Pax6 phenotype. During retinogenesis, Math5 is expressed significantly before NeuroD, Ngn2 or Mash1. To test whether these bHLH genes influence the fates of distinct classes of retinal neurons, we ectopically expressed Math5 and Mash1 in Xenopus retinal progenitors. Unexpectedly, lipofection of either mouse gene into the frog retina caused an increase in differentiated bipolar cells. Directed expression of Math5, but not Xath5, in Xenopus blastomeres produced an expanded retinal phenotype. We propose that Math5 acts as a proneural gene, but has properties different from its most closely related vertebrate family member, Xath5.  相似文献   

15.
The development of calvarial bones is tightly co-ordinated with the growth of the brain and needs harmonious interactions between different tissues within the calvarial sutures. Premature fusion of cranial sutures, known as craniosynostosis, presumably involves disturbance of these interactions. Mutations in the homeobox gene Msx2 as well as the FGF receptors cause human craniosynostosis syndromes. Our histological analysis of mouse calvarial development demonstrated morphological differences in the sagittal suture between embryonic and postnatal stages. In vitro culture of mouse calvaria showed that embryonic, but not postnatal, dura mater regulated suture patency. We next analysed by in situ hybridisation the expression of several genes, which are known to act in conserved signalling pathways, in the sagittal suture during embryonic (E15-E18) and postnatal stages (P1-P6). Msx1 and Msx2 were expressed in the sutural mesenchyme and the dura mater. FGFR2(BEK), as well as Bmp2 and Bmp4, were intensely expressed in the osteogenic fronts and Bmp4 also in the mesenchyme of the sagittal suture and in the dura mater. Fgf9 was expressed throughout the calvarial mesenchyme, the dura mater, the developing bones and the overlying skin, but Fgf4 was not detected in these tissues. Interestingly, Shh and Ptc started to be expressed in patched pattern along the osteogenic fronts at the end of embryonic development and, at this time, the expression of Bmp4 and sequentially those of Msx2 and Bmp2 were reduced, and they also acquired patched expression patterns. The expression of Msx2 in the dura mater disappeared after birth. FGF and BMP signalling pathways were further examined in vitro, in E15 mouse calvarial explants. Interestingly, beads soaked in FGF4 accelerated sutural closure when placed on the osteogenic fronts, but had no such effect when placed on the mid-sutural mesenchyme. BMP4 beads caused an increase in tissue volume both when placed on the osteogenic fronts and on the mid-sutural area, but did not effect suture closure. BMP4 induced the expression of both Msx1 and Msx2 genes in sutural tissue, while FGF4 induced only Msx1. We suggest that the local application of FGF on the osteogenic fronts accelerating suture closure in vitro, mimics the pathogenesis of human craniosynostosis syndromes in which mutations in the FGF receptor genes apparently cause constitutive activation of the receptors. Taken together, our data suggest that conserved signalling pathways regulate tissue interactions during suture morphogenesis and intramembranous bone formation of the calvaria and that morphogenesis of mouse sagittal suture is controlled by different molecular mechanisms during the embryonic and postnatal stages. Signals from the dura mater may regulate the maintenance of sutural patency prenatally, whereas signals in the osteogenic fronts dominate after birth.  相似文献   

16.
PURPOSE: To determine whether the p53 protein plays a role in the selective vulnerability of the inner retina to transient ischemia. METHODS: Transient retinal ischemia was induced using a high intraocular pressure (HIOP) model in the Sprague-Dawley rat for 60 minutes. Histopathologic outcome was determined 7 days after ischemia. In addition, analysis for evidence for apoptosis (TdT-dUTP terminal nick-end label [TUNEL] staining) and p53 protein expression (immunohistochemistry) was performed at several points during the reperfusion period. In a separate set of experiments, wild-type mice and two groups of transgenic mice, one homozygous and the other heterozygous for the p53 null gene, were also subjected to HIOP for 60 minutes, and histopathology was performed 7 days later. RESULTS: At 7 days subsequent to 60 minutes of ischemia in the rat, there was marked thinning of the inner retinal layers. There were scattered TUNEL-positive cells within the inner retina, peaking at 24 to 48 hours and persisting for at least 7 days. p53 immunochemistry demonstrated elevated protein levels within the inner retina; this finding peaked at 24 to 48 hours but was no longer present at 4 days after ischemia. TUNEL staining of the inner retina of the mouse was most prominent 24 hours subsequent to ischemia but persisted at 48 hours. Seven days subsequent to 60 minutes of ischemia in the wild-type and transgenic mice, histopathologic evaluation demonstrated preservation of the retinal histoarchitecture in the heterozygous group compared with the wild-type or homozygous animals. CONCLUSIONS: These data further support the hypothesis that the delayed cell death that occurs after transient retinal ischemia is, in part, apoptotic. In addition, they suggest a role for the p53 protein in the selective vulnerability of the inner retina to transient ischemia. p53 protein may be a target for future therapeutic agents in the treatment of disorders of the retina where ischemia plays a pathogenetic role.  相似文献   

17.
PURPOSE: To assess the role of vascular endothelial growth factor (VEGF) in the feline model of retinopathy of prematurity (ROP). METHODS: Retinopathy of prematurity was induced in neonatal cats by raising them in an oxygen-enriched (70% to 80%) atmosphere for 4 days to suppress vessel formation and then returning them to room air for 3 to 27 days. In situ hybridization was used to detect the expression of VEGF and its high-affinity receptor, flk-1, in the retina of neonatal cats, and glial fibrillary acidic protein immunocytochemistry was used to assess astrocyte status. RESULTS: The expression of VEGF in the innermost layers of retina fell in hyperoxia and increased on return to room air. Vascular endothelial growth factor expression was transient; it was maximal where vessels were about to form, and it rapidly downregulated after vessels had formed. During the proliferative vasculopathy of ROP, VEGF expression was stronger than in the normally developing retina, and the astrocytes that normally express VEGF degenerated. After the degeneration of astrocytes, VEGF was expressed by neurones of the ganglion cell layer. flk-1 was expressed by intraretinal and preretinal vessels. Supplemental oxygen therapy reduced or eliminated the overexpression of VEGF expression, astrocyte degeneration, and formation of preretinal vessels. CONCLUSIONS: Regulation of VEGF by tissue oxygen mediates the inhibition of vessel growth during hyperoxia and the subsequent proliferative vasculopathy. Degeneration of retinal astrocytes creates conditions for the growth of preretinal vessels.  相似文献   

18.
OBJECTIVE: To study the effects of an aldose reductase inhibitor (ARI-509, Wyeth-Ayerst, Princeton, NJ) and aminoguanidine (AMG), agents that have been reported to prevent or delay diabetic retinopathy, on retinal vascular abnormalities and the immunocytochemical expression in the retina of vascular endothelial growth factor (VEGF) in rats maintained for up to 2 years on a 50% galactose diet. METHODS: Albino rats were placed on a control diet, a diet containing 50% galactose, or the 50% galactose diet containing either ARI-509 or AMG. Treatment with ARI-509 or AMG was initiated at the beginning of the experiment or after 12 months of galactose feeding. After 22 to 24 months, the rats were killed and the retinal vasculature from half of one eye was isolated by trypsin-elastase digestion for semiquantitative evaluation of retinal vascular lesions. The other half of the retina was prepared for immunocytochemistry and stained for the presence of VEGF, factor VIII, vimentin, and glial fibrillary acidic protein. Red blood cells, sciatic nerves, and a portion of the retina from the second eye were assayed for glucose, galactose, fructose, sorbitol, galactitol, and myo-inositol. Red blood cells were also assayed for galactosylated hemoglobin. RESULTS: Galactose-fed animals developed a vascular retinopathy characterized by severe cellular loss in the retinal capillaries and intensification of periodic acid-Schiff staining of the vascular basement membranes. Some animals also displayed dilation and hypercellularity of vessels in the posterior retina. These changes were substantially reduced in animals receiving ARI-509 from the beginning of the galactose diet, but were unaffected in all of the other treatment groups. None of the rats receiving ARI-509 or AMG treatment, whether initiated from the onset or after 12 months of galactosemia, demonstrated VEGF immunoreactivity. With the exception of the animals receiving ARI-509 from the beginning of the experiment, all of the galactose-fed animals developed dense cataracts within 6 weeks of the beginning of the galactose diet. Galactitol levels in animals receiving ARI-509 were 86% to 93% lower in red blood cells, retina, and sciatic nerve than those in the other galactose-fed groups. CONCLUSIONS: Although ARI-509 and AMG have different abilities to delay or prevent the diabetic-like retinopathy in galactosemic rats, even when substantial retinal microvascular acellularity occurs, both drugs prevent the immunocytochemical expression of VEGF. These results suggest that factors other than hypoxia may be responsible for VEGF expression in the retina, and that aldose reductase inhibitors and AMG have potential roles in preventing such expression and, thus, perhaps preventing retinal neovascularization.  相似文献   

19.
PURPOSE: To determine whether the retina is hypoxic in early stages of diabetic retinopathy in cats and to correlate intraretinal PO2 with fluorescein angiographic and histologic alterations. METHODS: Intraretinal PO2 was measured with microelectrodes in three cats with long-standing diabetes (>6 years) that had been followed with fluorescein angiographs every 6 months. Average PO2 in the inner vascularized half of the retina was compared with similar measurements in 21 control animals. Photoreceptor oxygen consumption was also compared. The retinal vascular endothelium of the diabetic animals was stained for ADPase activity in flatmounts, and transverse sections were used to visualize microscopic alterations in vascular structure. RESULTS: PO2 in the inner half of the retina was abnormally low in the diabetic cats, 7.7+/-5.2 mm Hg (35 penetrations in 3 cats) versus 16.4+/-9.3 mm Hg in normal cats (85 penetrations in 21 cats) (P < 0.001). Oxygenation was almost normal in some regions of the diabetic retinas, but little evidence of oxygen supply from the retinal circulation was observed in other regions. Inner retinal hypoxia was present in areas with no detectable capillary dropout in fluorescein angiograms or flatmounts. The worst changes histologically were microaneurysms, leukocyte and platelet plugging of aneurysms and venules, and degenerating endothelial cells in capillary walls. These histologic abnormalities were confined to small regions, some of which could be positively correlated with markedly abnormal PO2 profiles. Photoreceptor oxygen utilization was not affected in two diabetic cats, but was below normal in one animal in which choroidal PO2 was low. CONCLUSIONS: This is the first direct demonstration of retinal hypoxia in early diabetic retinopathy, before capillary dropout was evident clinically. Hypoxia was correlated with endothelial cell death, leukocyte plugging of vessels, and microaneurysms.  相似文献   

20.
Targeted disruption of the homeobox gene T/ebp (Nkx2.1, Ttf1, Titf1) in mice results in ablation of the pituitary. Paradoxically, while T/ebp is expressed in the ventral diencephalon during forebrain formation, it is not expressed in Rathke's pouch or in the pituitary gland at any time of embryogenesis. Examination of pituitary development in the T/ebp homozygous null mutant embryos revealed that a pouch rudiment is initially formed but is eliminated by programmed cell death before formation of a definitive pouch. In the diencephalon of the mutant, Bmp4 expression is maintained, whereas Fgf8 expression is not detectable. These data and additional genetic and molecular observations suggest that Rathke's pouch develops in a two-step process that requires at least two sequential inductive signals from the diencephalon. First, BMP4 is required for induction and formation of the pouch rudiment, a role confirmed by analysis of Bmp4 homozygous null mutant embryos. Second, FGF8 is necessary for activation of the key regulatory gene Lhx3 and subsequent development of the pouch rudiment into a definitive pouch. This study provides firm molecular genetic evidence that morphogenesis of the pituitary primordium is induced in vivo by signals from the adjacent diencephalon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号