首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
We tested a model [Benthic Invertebrate Time series Habitat Simulation (BITHABSIM)] for simulating the effect of changes in flow on benthic macroinvertebrate habitat and relative abundance. The model calculates a habitat index (WUA2) based on weighted usable area (WUA) modified to account for reduction of invertebrate abundance by flood disturbance and drying followed by recolonization. The test involved a comparison of WUA and WUA2 with a 1‐year abundance time series of the common New Zealand mayfly Deleatidium spp. in a small gravel‐bed river with naturally variable flows. The fit of WUA and WUA2 to the Deleatidium spp. abundance time series was judged on correlation and regression analysis of the magnitudes and slopes of the mean‐standardized indices and abundance versus time. WUA fit the low flow part of the abundance time series fairly well, but not the portion after flood disturbance. Over the entire time series, WUA fit Deleatidium spp. abundance and rate of change poorly. WUA2 fit Deleatidium abundance better, but the correlation was not quite statistically significant at the 95% level. However, it did explain the essential temporal pattern. The fit of the slopes of standardized WUA2 to the slopes of standardized Deleatidium spp. abundance was significant (R2 = 0.66), but with a systematic bias; high slopes were underestimated and low slopes overestimated. BITHABSIM adds biological realism to traditional hydraulic‐habitat modelling based on WUA and so improves the reliability of assessments of effects of flow change on benthic macroinvertebrates over the entire hydrograph. Parameter uncertainty and research needs to improve BITHABSIM and future process‐based models are discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A baseline assessment of the Missouri River fish community and species‐specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero‐inflated Poisson (ZIP) model was applied. This follow‐up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large‐scale, large‐river, PSPAP‐type monitoring program can be an effective tool for assessing population trends and habitat usage of large‐river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Expert judgment is regularly used in ecology for assessing the suitability of habitats, in particular of rare or endangered species or species with limited empirical data. Yet, differences in expert judgment of habitat suitability and consequent implications for ecosystem management have not been evaluated and are largely ignored. Here, we evaluated the variability of 13 expert judgments and the related uncertainty in hydraulic habitat suitability modelling using the riverine fish species Phoxinus phoxinus as a model species. We found (i) the highest agreement among experts identifying the best and fully unsuited habitat conditions, but (ii) that disagreement among experts is surprisingly large, (iii) with largest differences related to the experts' perception of flow velocity and (iv) that semi‐suitable transition areas between high and low habitat suitability are most susceptible to disagreements. We emphasize that expert judgment of habitat suitability is useful for many applications and especially highly suitable habitats would be reliably identified by experts. However, expert judgment‐based assessments should be iterative processes that include both different experts and feedback on the potential effects of their assessments. Furthermore, we recommend that expert judgment should not replace data‐driven empirical ecology but its benefits can rather complement it. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Two‐dimensional hydrodynamic models are increasingly common in riverine research and management. However, input data are not standardized among studies, and assessments of model performance are uncommon, which hinder interpretation of model results and comparisons among studies. Herein, we describe a framework for two‐dimensional hydrodynamic model input data collection, model calibration and validation to evaluate model predictions. We present a logical process for the validation of depth and velocity that recognizes the inherent spatial uncertainty in the field measurements and modelling results. The hydrodynamic model we present as an example shows agreement between predicted and observed water surface elevation, area of inundation and spatial distributions of depth and velocity at calibration and independent validation discharges. If this model development and assessment framework was adopted by others, it would allow comparison between studies and provide a foundation for establishing model performance standards. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
The natural flow regime of many rivers in the USA has been impacted by anthropogenic structures. This loss of connectivity plays a role in shaping river ecosystems by altering physical habitat characteristics and shaping fish assemblages. Although the impacts of large dams on river systems are well documented, studies on the effects of low‐head dams using a functional guild approach have been fewer. We assessed river habitat quality and fish community structure at 12 sites on two rivers; the study sites included two sites below each dam, two sites in the pool above each dam and two sites upstream of the pool extent. Fish communities were sampled from 2012 to 2015 using a multi‐gear approach in spring and fall seasons. We aggregated fishes into habitat and reproductive guilds in order to ascertain dams' effects on groups of fishes that respond similarly to environmental variation. We found that habitat quality was significantly poorer in the artificial pools created above the dams than all other sampling sites. Fast riffle specialist taxa were most abundant in high‐quality riffle habitats farthest from the dams, while fast generalists and pelagophils were largely restricted to areas below the downstream‐most impoundment. Overall, these dams play a substantial role in shaping habitat, which impacts fish community composition on a functional level. Utilizing this functional approach enables us to mechanistically link the effects of impoundments to the structure of fish communities and form generalizations that can be applied to other systems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
Analysis of inflections or breakpoints apparent in relationships between measures of wetted perimeter and discharge can be used to assist in the determination of minimum environmental flows for perennial rivers. This paper suggests refinements and provides an example application of the wetted perimeter method for the determination of cease‐to‐pump limits in a perennial, unregulated gravel‐bed river subject to increasing levels of surface water extraction. HEC‐GeoRAS modelling outputs of riffle wetted area are used to illustrate that the magnitude of the discharge selected to represent 100% habitat availability is of crucial importance to the breakpoint method. Because of the dependence of the technique on this assumption, we suggest that it is prudent to use an upper and lower limiting discharge based on an assessment of the degree of flow variability to develop a flow range around the zone of diminishing return in the wetted perimeter to discharge relationship. For rivers exhibiting a low degree of flow variability, the mean and median daily flows are likely to provide appropriate discharges for representation of 100% habitat availability. For perennial rivers with a higher degree of flow variability and considerable differences between the mean and median daily flows we suggest use of the 50th and 80th flow duration percentiles. Wetted perimeter breakpoint results are also influenced by the degree to which areas of non‐riffle habitat are included in the analysis. Inclusion of excessive pool areas can lead to significant reductions in resultant recommendations for cease‐to‐pump limits or minimum environmental flows. Integration of hydraulic model outputs with GIS for wetted perimeter analysis of riffles provides a useful, rapid, field‐based approach that can assist with determination of cease‐to‐pump limits or minimum environmental flows in gravel‐bed rivers. However, care is needed in its application and interpretation as the technique is prone to numerous subjective choices that have a substantial influence on results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we assess the capabilities of an unmanned/uninhabited aerial vehicle (UAV) to characterize the channel morphology and hydraulic habitat of a 1‐km reach of the Elbow River, Alberta, Canada, with the goal of identifying the advantages and challenges of this technology for river research and management. Using a small quadcopter UAV to acquire overlapping images and softcopy photogrammetry, we constructed a 5‐cm resolution orthomosaic image and digital elevation model (DEM). The orthomosaic was used to map the distribution of geomorphic and aquatic habitat features, including bathymetry, grain sizes, undercut banks, forested channel margins, and large wood. The DEM was used to initialize and run River2D, a two‐dimensional hydrodynamic model, and resulting depth and velocity distributions were combined with the mapped physical habitat features to produce refined estimates of available habitat in terms of weighted usable area. Based on 297 checkpoints, the vertical root‐mean‐squared error of the DEM was 8.8 cm in exposed areas and 11.9 cm in submerged areas following correction of the DEM for overprediction of elevations as a result of the refractive effects of water. Overall, we find several advantages of UAV‐based imagery including low cost, high efficiency, operational flexibility, high vertical accuracy, and centimetre‐scale resolution. We also identify some challenges, including vegetation obstructions of the ground surface, turbidity, which can limit bathymetry extraction, and an immature regulatory landscape, which may slow the adoption of this technology for operational measurements. However, by enabling dynamic linkages between geomorphic processes and aquatic habitat to be established, we believe that the advantages of UAVs make them ideally suited to river research and management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Hydropeaking presents one of the large impacts on river ecology and is gaining importance because of an increasinlgy volatile energy market with high portions of new renewable energies dependent on local climate conditions. This study presents the application of a fuzzy logic model for the investigation of macrobenthic habitats under hydropeaking conditions in the Norwegian river Surna. Preference data of the three taxa Baetis rhodani, Hydroptila spp. and Allogamus auricollis with distinctively different habitat requirements related to near‐bottom flow forces (high/low forces, and narrow range) are used. These data are transferred into the multivariate fuzzy rule‐based physical habitat model Computer Aided Simulation of Instream flow and Riparia in order to integrate water depth and river bed substrate as additional parameters. Permanently available habitats (persistent habitats) are assessed for different scenarios of hydropeaking operation. It is found that the amount of persistently high‐quality habitat is closely related to the size and range of fluctuations in hydraulic conditions occuring during hydropeaking events. Effects are much more distinct for species with a narrow range of hydraulic preference. The integration of water depth in the simulations has a noticable impact on the amount and quality of predicted habitats. Substrate conditions in the investigation site are homogeneous and, in the specific case considered, do not have a significant impact. The study suggests persistent habitats as a suitable indicator of hydropeaking impact on organisms with low mobility. The persistent habitat approach takes into account that organisms with a low mobility and a distinct range of tolerance related to hydraulic stress tend to settle in areas with permanently stable conditions. Multivariate aspects are accounted through the fuzzy rule‐based approach and do clearly affect habitat predictions. Habitat requirements of species particularly sensitive to hydropeaking are proposed for the investigation and application in the future. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Fishery biologists are increasingly recognizing the importance of considering the dynamic nature of streams when developing streamflow policies. Such approaches require information on how flow regimes influence the physical environment and how those factors, in turn, affect species‐specific demographic rates. A more cost‐effective alternative could be the use of dynamic occupancy models to predict how species are likely to respond to changes in flow. To appraise the efficacy of this approach, we evaluated relative support for hypothesized effects of seasonal streamflow components, stream channel characteristics, and fish species traits on local extinction, colonization, and recruitment (meta‐demographic rates) of stream fishes. We used 4 years of seasonal fish collection data from 23 streams to fit multistate, multiseason occupancy models for 42 fish species in the lower Flint River Basin, Georgia. Modelling results suggested that meta‐demographic rates were influenced by streamflows, particularly short‐term (10‐day) flows. Flow effects on meta‐demographic rates also varied with stream size, channel morphology, and fish species traits. Small‐bodied species with generalized life‐history characteristics were more resilient to flow variability than large‐bodied species with specialized life‐history characteristics. Using this approach, we simplified the modelling framework, thereby facilitating the development of dynamic, spatially explicit evaluations of the ecological consequences of water resource development activities over broad geographic areas. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

10.
1. Kielder Reservoir regulates the Rivers North Tyne and Tyne. It provides a regular supply of water for downstream users, supports abstractions for a major water transfer scheme and provides hydroelectric power (HEP). Kielder's release regime typically alternates between a 1.3 m3 s−1 compensation flow and 10–15 m3 s−1 HEP releases of between 3 and 7 days in duration. Occasionally releases of up to 30 m3 s−1 are made for the purpose of encouraging fish runs, for recreational events or to help in water quality management. The impacts of this release regime on Atlantic salmon (Salmo salar) and brown trout (S. trutta) habitat at four sites on the North Tyne are assessed and alternative regimes, designed to minimize impacts, are presented. 2. There is no evidence that the compensation flow results in extreme loss of instream habitat. A discharge of 1.3 m3 s−1 ensures that water is maintained over most of the channel area at sites representative of upper, middle and lower sections of the North Tyne. This discharge lies above breaks in slope of respective site discharge versus wetted area curves; thus, disproportionate increases in discharge would be needed to increase wetted area. Simulations using the Physical Habitat Simulation System (PHABSIM) suggest that the compensation flow provides between 50% and 90% of the maximum possible weighted usable area (WUA) for juvenile (0+) salmonids. 3. During HEP releases, juvenile salmonid habitat (WUA) apparently falls to between 20 and 40% of site maxima. Newly emerged juvenile fish (March and April) are most affected by HEP releases because they are relatively small (25 mm in length) and water temperatures are relatively low at this time of year. During March and April, critical near‐bed displacement velocities for newly emerged fish may be exceeded across large parts (80%) of sites up to 8 km downstream from Kielder Reservoir; fish would either be displaced downstream or forced to relocate to flow refuge areas. 4. The availability of Atlantic salmon spawning habitat (WUA) at a key site is limited by the compensation flow; 1.3 m3 s−1 provides approximately one third of the habitat available at the optimum discharge (4 m3 s−1). At this site, a discharge of approximately 2 m3 s−1 is needed to ensure most of the bed is inundated by water. Regulation has reduced the duration of flows exceeding 2 m3 s−1 from 90 to 60% of the spawning season. 5. Simulations suggest that when discharge drops from 30 m3 s−1 to the compensation flow, up to 60% of the optimum spawning habitat available at the former discharge may be left stranded (dry). This could potentially lead to egg or alevin mortality. 6. PHABSIM simulations suggest that increasing the compensation flow to 4 m3 s−1 during the spawning period (November and December) is likely to increase the availability of suitable spawning habitat. Also, increasing the compensation flow to 2 m3 s−1 during the incubation period (January through March) would minimize redd stranding. Reductions in the number of HEP releases in March and April would limit the extent to which newly emerged fish are exposed to velocities that potentially displace them. Such changes to the Kielder release regime may have implications for water resource management. While it is important that the biological instream flow requirements of the North Tyne are incorporated into the Kielder operating policy, these should be integrated along with the need for channel maintenance flows, downstream water supply abstractions and HEP generation, as well as for transfers of water to other catchments. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号