首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
The effect of the bottom slope on abrupt deflected supercritical water flow was experimentally and theoretically studied. Model tests were conducted in a flume of 1.2 m wide and 2.6 m long with sloped bottom at an angle 35.54°, its length of deflector was 0.2 m and the deflection angles were 15° and 30°. An approximate method for calculating the shock wave angle and depth ratio of the abrupt deflected supercritical water flow was suggested, and a correction coefficient for the hydrodynamic pressure was introduced to generalize the momentum equation in the direction perpendicular to the shock front. It must be noticed that in the sloped channel the shock wave angle and the depth ratio are no longer constant as those in the horizontal channels, but slowly change along the shock front. The calculated results are in good agreement with measured data.  相似文献   

2.
There are two types of floating bridge such as discrete-pontoon floating bridges and continuous-pontoon floating bridges. Analytical models of both floating bridges subjected by raoving loads are presented to study the dynamic responses with hydrodynamic influence coefficients for different water depths. The beam theory and potential theory are introduced to produce the models. The hydrodynamic coefficients and dynamic responses of bridges are evaluated by the boundary element method and by the Galerkin method of weighted residuals, respectively. Considering causal relationship between the frequencies of the oscillation of floating bridges and the added mass coefficients, an iteration method is introduced to compute hydrodynamic frequencies. The results indicate that water depth has little influence upon the dynamic responses of both types of floating bridges, so that the effect of water depth can be neglected during the course of designing floating bridges.  相似文献   

3.
The hydrodynamic characteristics of the overland flow on a slope with a three-dimensional Geomat are studied for different rainfall intensities and slope gradients. The rainfall intensity is adjusted in the rainfall simulation system. It is shown that the velocity of the overland flow has a strong positive correlation with the slope length and the rainfall intensity, the scour depth decreases with the increase of the slope gradient for a given rainfall intensity, and the scour depth increases with the increase of the rainfall intensity for a given slope gradient, the overland flow starts with a transitional flow on the top and finishes with a turbulent flow on the bottom on the slope with the three-dimensional Geomat for different rainfall intensities and slope gradients, the resistance coefficient and the turbulent flow Reynolds number are in positively related logarithmic functions, the resistance coefficient and the slope gradient are in positively related power functions, and the trend becomes leveled with the increase of the rainfall intensity. This study provides some important theoretical insight for further studies of the hydrodynamic process of the erosion on the slope surface with a three-dimensional Geomat.  相似文献   

4.
An analytical method based on the eigenfunction expansion and the Graf’s addition theorem for Bessel functions is developed to study the hydrodynamic interactions of an array of truncated circular cylinders with each cylinder oscillating independently in different prescribed modes. The hydrodynamic radiation and diffraction of linear waves by such an array of cylinders are investigated and the analytical solutions of the velocity potentials are obtained. After comparisons for degenerated cases and program verifications, several cases for an array of truncated cylinders with each cylinder oscillating independently in surge, sway, heave, roll, and pitch modes with different prescribed amplitudes, are studied and the hydrodynamic forces and moments acting on the cylinders are obtained.  相似文献   

5.
We investigate, in this paper, the effects of thermo-physical properties on the flow and heat transfer in a thin film of a power-law liquid over a horizontal stretching surface in the presence of a viscous dissipation. The fluid properties, namely the fluid viscosity and the fluid thermal conductivity, are assumed to vary with temperature. Using a similarity transformation, the governing partial differential equations with a time dependent boundary are converted into coupled non-linear Ordinary Differential Equations (ODEs) with variable coefficients. Numerical solutions of the coupled ODEs are obtained by a finite difference scheme known as the Keller-box method. Results for the velocity and temperature distributions are presented graphically for different values of the pertinent parameters. The effects of unsteady parameter on the skin friction, the wall temperature gradient and the film thickness are presented and analyzed for zero and non-zero values of the temperature-dependent thermo-physical properties. The results obtained reveal many interesting features that warrant further study on the non-Newtonian thin film fluid flow phenomena, especially the shear-thinning phenomena.  相似文献   

6.
A CFD method is used to numerically predict the hydrodynamic forces and moments acting on a ship passing through a lock with a constant speed. By solving the RANS equations in combination with the RNG k-e turbulence model, the unsteady viscous flow around the ship is simulated and the hydrodynamic forces and moments acting on the ship are calculated. UDF is com-piled to define the ship motion. Meanwhile, grid regeneration is dealt with by using the dynamic mesh method and sliding interface technique. Under the assumption of low ship speed, the effects of free surface elevation are neglected in the numerical simulation. A bulk carrier ship model is taken as an example for the numerical study. The numerical results are presented and compared with the available experimental results. By analyzing the numerical results obtained for locks with different configurations, the influences of approach wall configuration, lock configuration symmetry and lock chamber breadth on the hydrodynamic forces and moments are demonstrated. The numerical method applied in this paper can qualitatively predict the ship-lock hydrodynamic interaction and pro-vide certain guidance on lock design.  相似文献   

7.
The cochlea is an important structure in the hearing system of humanity. Its unique structure enables the sensibility to the sound waves of varied frequencies. The widely accepted model of the cochlea is expressed as a long tube longitudinally divided by a membrane named the Basilar Membrane (BM), into two fluid-filled channels. Based on various assumptions for the cochlear fluid and structure, simplified mathematical and mechanical cochlear models were developed to help to understand the mechanism of the complex coupled system in the past decades. This paper proposes a hydrodynamic numerical cochlear model with consideration of the Fluid-Structure Interaction (FSI). In this model, the cochlear lymph is considered as in a Newtonian viscous fluid, and the basilar membrane is modeled as a composite structure. The traveling wave is simulated. Also focusing on the pressure in the fluid field, the results are compared with studies of Peterson and Bogert, where it was assumed that the slow compressive waves are traveling along the BM. Furthermore, the transmitting time of the cochlear traveling wave is also discussed.  相似文献   

8.
Slamming is the phenomenon of structure impacting the water surface. It always results in the extremely high load on the structure. This paper is mainly concerned with the slamming force caused by the wave-plate interaction. In this paper, the process of solitary wave impacting onto the horizontal plate is simulated with the help of the moving particle semi-implicit and finite element coupled method(MPS-FEM). The MPS method is adopted to calculate the fluid domain while the structural domain is solved by FEM method. In the first series of simulations, the profiles of the solitary waves with various amplitudes, which are generated in the numerical wave tank, are compared with the theoretical results. Thereafter the interaction between the solitary waves and a rigid plate is simulated. The effects of wave amplitude, as well as the elevation of the plate above the initial water level, on the slamming force are numerically investigated. The calculated results are compared with the available experimental data. Finally, the interactions between the solitary waves and the elastic plate are also simulated. The effects of the structural flexibility on the wave-induced force are analyzed by the comparison between the cases with elastic and the rigid plate.  相似文献   

9.
An analytical method was proposed to analyze the radiation and diffraction of water waves by a bottom-mounted circular cylinder in a two-layer fluid. Analytical expressions for added mass and damping coefficients, as well as the wave excitation forces of the circular cylinder were obtained by an eigenfunction expansion method. The hydrodynamic forces on the bottom-mounted circular cylinder in a two-layer fluid include not only the added mass and damping coefficients, but also the wave forces of the surface and internal-wave modes. This is different from the case of a homogenous fluid. Some examples were given, showing that density stratification can have a relative large effect on these hydrodynamic forces over a wide range of frequencies.  相似文献   

10.
This study investigates the torsional galloping phenomenon, an instability type flow-induced oscillation, in an elastic stru-cture due to hydrodynamic loads into the water current. The structure applied here is a rectangular flat plate with an elastic axis in its mid-chord length. The elasticity is provided by torsion spring. The flat plate has only one degree of freedom which is rotation in pure yaw about its axis. It is observed that as the current speed is higher than a critical velocity, the flat plate becomes unstable. The instability leads to torsional galloping occurrence, as a result of which the flat plate begins to yaw about the elastic axis. By testing two different chord lengths each with several torsion spring rates, the flat plate behavior is investigated and three different responses are recognized. Then, a phenomenological model is developed with the original kernel in the form of the van der Pol-Duffing equa-tion. The model explains these three responses observed experimentally.  相似文献   

11.
The radiation and the diffraction of linear waves by a rectangular structure with an opening at its bottom floating in oblique seas of finite depth are investigated. Analytical expressions for the radiated potentials and the diffracted potential are obtained by use of the method of separation of variables and the eigenfunction expansion method, with the unknown coefficients being determined by the boundary conditions and the matching requirement on the interface. The hydrodynamic coefficients and the wave excitation forces are verified using the symmetry properties of coupled hydrodynamic coefficients and one specific example investigated previously. By use of the present analytical-numerical solution, the influences of the angle of incidence, the width of the opening on the wave forces and the hydrodynamic coefficients are investigated. It is also found that in the oblique sea the external excitation frequency that can lead to the resonance of a rectangular tank depends on the wave direction and the wave number of the incident wave.  相似文献   

12.
水垫塘结构是影响高坝泄洪消能的关键,优化水垫塘底板型式对有效地增加底板稳定性和减小动水荷载至关重要。平底型和反拱型底板作为两种常见的水垫塘结构型式被业界广泛采用,但关于两者的动水荷载特性对比研究尚不多见。基于白鹤滩水电站1∶50整体模型,采用物理模型试验的方法对比了平底型和反拱型水垫塘在时均压强和脉动压强方面的特性。结果表明:反拱型水垫塘底板的时均压强峰值小于平底型,来流方向上反拱型水垫塘底板的时均压强低谷值小于平底型;两种型式水垫塘脉动压强峰值差异较小,反拱型底板整体脉动压强大于平底型,但反拱型脉动压强梯度小于平底型。  相似文献   

13.
Two‐dimensional hydrodynamic models are increasingly common in riverine research and management. However, input data are not standardized among studies, and assessments of model performance are uncommon, which hinder interpretation of model results and comparisons among studies. Herein, we describe a framework for two‐dimensional hydrodynamic model input data collection, model calibration and validation to evaluate model predictions. We present a logical process for the validation of depth and velocity that recognizes the inherent spatial uncertainty in the field measurements and modelling results. The hydrodynamic model we present as an example shows agreement between predicted and observed water surface elevation, area of inundation and spatial distributions of depth and velocity at calibration and independent validation discharges. If this model development and assessment framework was adopted by others, it would allow comparison between studies and provide a foundation for establishing model performance standards. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
基于重叠网格技术数值模拟船舶纯摇首运动   总被引:1,自引:0,他引:1  
该文采用基于非定常RANS方程的黏性数值模拟方法,对标准船模DTMB5512裸船体在平面运动机构(PMM)控制作用下的纯摇首运动进行了数值模拟。文中数值计算采用基于开源CFD工具包Open FOAM和重叠网格技术开发的多功能水动力学求解器naoe-FOAM-SJTU。根据SIMMAN2014提供的标准算例,对同一运动频率下,在Fn=0.28工况下的3种不同运动幅值的纯摇首运动进行了数值计算,得出了船舶不同工况下的阻力、侧向力和转首力矩的历时曲线。并且根据操纵性数学模型(MMG)推导出相应的水动力导数值,所有计算结果同模型试验数据吻合较好,验证了采用当前处理方法数值求解纯摇首运动的可靠性。  相似文献   

15.
曾永顺  姚志峰  洪益平  王福军 《水利学报》2020,51(11):1432-1439
为评估水力机械外部瞬态载荷作用下的动力响应幅值,必须考虑流固耦合产生的水力阻尼效应。如何准确预测水下结构水力阻尼参数是设计阶段评价水力机械运行稳定性的难点问题。借助分离式单/双向流固耦合数值模拟方法,针对工程中常用的NACA0009翼型,开展了水翼在5~20 m/s流速下的振动特性和水力阻尼比数值预测方法研究。分析结果表明:第1阶弯曲模态振型在静水中与20 m/s流速下相一致,且低阶模态水翼固有频率随流速变化在3.95%以内,据此,单向流固耦合中将静水中振型及固有频率作为动水水翼的初始条件的假设是可行的。基于单向流固耦合方法所预测的水力阻尼比与实验值的平均相对偏差为11.42%。双向流固耦合则不需要该假设,能更加准确地预测低阶模态固有频率、水翼尾部脱落涡频率和水力阻尼比,相对实验值的平均偏差分别为4.36%、4.24%和4.95%。单/双向流固耦合数值方法都能预测水力阻尼比随流速线性增加的规律。本文算例中,相同计算资源条件下双向流固耦合所需计算时间是单向计算的15倍。在实际工程应用中,推荐优先采用单向流固耦合方法。  相似文献   

16.
根据现场监测数据系统研究了人行地道基坑施工过程中围护结构的侧向位移规律,并用岩土工程专业有限元软件对基坑开挖过程进行了模拟,将得出的侧向变形与实测侧向变形进行对比分析,重点研究了基坑开挖不同深度侧向位移的变化规律以及底板和顶板对围护结构侧向变形的影响。结果表明:围护结构水平位移呈“中间大、两端小”的特征,随着开挖的不断加深,围护结构侧向位移的最大值位置也不断向下移动;底板和顶板的浇筑有效的控制了围护结构的变形;有限元软件计算结果与实测数据取得了较好的一致性,可有效的预测基坑工程围护结构的变形,为类似工程的设计与施工提供参考。  相似文献   

17.
Radiation and diffraction analysis of a cylindrical body with a moon pool   总被引:1,自引:0,他引:1  
An analytical solution is presented for the radiation and the diffraction of a cylindrical body with a moon pool floating on the surface of water with a finite depth. The expressions for the potentials are obtained by the method of separation of variables, and the unknown coefficients are determined by the boundary conditions and the matching requirements on the interface. The effects of the moon pool on the hydrodynamic characteristics of the body are investigated. Some peaks are observed on the curves of the added mass and damping coefficients, corresponding to the resonant frequencies of the moon pool. The internal free surface moves like a piston at a certain low resonant frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号