首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combined simulation-optimization approaches have been used as tools to derive optimal groundwater management strategies to maintain or improve water quality in contaminated or other aquifers. Surrogate models based on neural networks, regression models, support vector machies etc., are used as substitutes for the numerical simulation model in order to reduce the computational burden on the simulation-optimization approach. However, the groundwater flow and transport system itself being characterized by uncertain parameters, using a deterministic surrogate model to substitute it is a gross and unrealistic approximation of the system. Till date, few studies have considered stochastic surrogate modeling to develop groundwater management methodologies. In this study, we utilize genetic programming (GP) based ensemble surrogate models to characterize coastal aquifer water quality responses to pumping, under parameter uncertainty. These surrogates are then coupled with multiple realization optimization for the stochastic and robust optimization of groundwater management in coastal aquifers. The key novelty in the proposed approach is the capability to capture the uncertainty in the physical system, to a certain extent, in the ensemble of surrogate models and using it to constrain the optimization search to derive robust optimal solutions. Uncertainties in hydraulic conductivity and the annual aquifer recharge are incorporated in this study. The results obtained indicate that the methodology is capable of developing reliable and robust strategies for groundwater management.  相似文献   

2.
Adequate and reliable parameters are key to the sustainable management of vital groundwater resources. Present study focuses on the evaluation of direct methods (tidal efficiency and time lag methods) and an extended tide–aquifer interaction technique for determining the hydraulic parameter of coastal unconfined and confined aquifer systems. The hydraulic diffusivities of unconfined and confined aquifer systems were estimated using the tidal efficiency and time lag methods as well as they were optimized using the tide–aquifer interaction model and the Levenberg–Marquardt optimization technique. The hydraulic diffusivities were optimized by the Levenberg–Marquardt technique following two approaches: lumped tidal component approach and multi-tidal component approach. The effect of spring and neap tidal data on parameter estimates was also analyzed. The tide–aquifer interaction data for two unconfined sites and three confined sites were used in this study. For all the five sites under study, the aquifer hydraulic diffusivities based on the time lag method were found to be much larger (2 to 14 fold for the unconfined sites and 5 to 8 fold for the confined sites) than those based on the tidal efficiency method. The analysis of the optimization results indicated that the hydraulic diffusivities following “multi-tidal component approach” are more reliable and accurate for both unconfined and confined aquifers than those obtained following “lumped tidal component approach”. Consequently, the use of “multi-tidal component approach” is strongly recommended for the determination of aquifer parameters by the tide–aquifer interaction technique. Furthermore, the tide–interaction data corresponding to spring and neap tidal events were found to significantly affect the aquifer diffusivities yielded by the tide–aquifer interaction technique. It is concluded that a judicious use of tide–aquifer interaction technique is indispensable for the reliable estimates of hydraulic parameters of coastal aquifer systems.  相似文献   

3.
Dey  Subhajit  Prakash  Om 《Water Resources Management》2022,36(7):2327-2341

The main management challenge in coastal aquifers is to prevent saltwater intrusion, ensuring ample freshwater supply. Saltwater intrusion happens due to unregulated pumping from production wells. Therefore, it is essential to have an effective management policy, which ensures the requisite amount of freshwater to be withdrawn from coastal aquifers without causing saltwater intrusion. A methodology for optimizing production well locations and maximizing pumping from production wells is presented to achieve these conflicting objectives. The location of production wells directly affects the amount of freshwater pumped out of the coastal aquifer. Simultaneous optimization of production well locations and pumping from the same is achieved by linking mathematical simulation models with the optimization algorithm. A new methodology using coupled sharp-interface and density-dependent simulation models is developed to find optimal well locations and optimize the amount of freshwater pumped from the coastal aquifer. The performance of the developed methodology is evaluated for saltwater intrusion in the coastal city of Puri, India. The performance evaluation results show the developed methodology's applicability for managing saltwater intrusion while maximizing freshwater pumping in coastal aquifers under constraints of well location.

  相似文献   

4.
Effective management of groundwater in arid countries, such as Saudi Arabia, is an important factor in sustainable development. A regional numerical simulation model of a multi-aquifer system including the Dammam and Umm Er Radhuma (UER) aquifers was developed to assess the behaviour of the aquifer system under long-term water stresses. The model was utilized to predict the responses of the aquifer system under three alternative pumping schemes over a planning horizon of 31 years (1995-2025). Model results postulate that dewatering of the Dammam aquifer will occur at low productivity sites and along the outcrop with the current trend towards increasing abstraction. The UER will exhibit significant cones of depression at large irrigation projects. Aquifer dewatering and drawdowns will be minimal with the conservation alternative. This management scheme should be adopted for the future development and protection of groundwater in the province.  相似文献   

5.

Saltwater intrusion into coastal aquifers has become a prominent environmental concern worldwide. As such, there is a need to prepare and implement proper remediation techniques with careful planning of freshwater withdrawal systems for controlling saltwater intrusion in coastal marine and estuarine environments. This paper investigates the performance of groundwater circulation well (GCW) in controlling saltwater intrusion problems in unconfined coastal aquifers. The GCWs have been established as a promising in-situ remedial technique of contaminated groundwater. The GCW system creates vertical circulation flow by extracting groundwater from an aquifer through a screen in a single well and injecting back into the aquifer through another screen. The circulation flow induced by GCW force water in a circular pattern between abstraction and recharge screens and can be as a hydraulic barrier for controlling saltwater intrusion problem in coastal aquifers. In this study, an effort has been made to investigate the behavior of saltwater intrusion dynamics under a GCW. An experiment has been conducted in a laboratory-scale flow tank model under constant water head boundary conditions, and the variable-density flow and transport model FEMWATER is used to simulate the flow and transport processes for the experimental setup. The evaluation of the results indicates that there is no further movement of saltwater intrusion wedge towards the inland side upon implementation of GCW, and the GCW acts as a hydraulic barrier in controlling saltwater intrusion in coastal aquifers. The present study reveals the GCWs system can effectively mitigate the saltwater intrusion problem in coastal regions and could be considered as one of the most efficient management strategies for controlling the problem.

  相似文献   

6.
Groundwater pumping from Kalbha and Fujairah coastal aquifer of the United Arab Emirates (UAE) has increased significantly during the last two decades to meet the agriculture water demands. Due to the lack of natural replenishment from rainfall and the excessive pumping, groundwater levels have declined significantly causing an intrusion of seawater in the coastal aquifer of Wadi Ham. As a result, many pumping wells in the coastal zone have been terminated and a number of farms have been abandoned. In this paper, MODFLOW was used to simulate the groundwater flow and assess the seawater intrusion in the coastal aquifer of Wadi Ham. The model was calibrated against a five-year dataset of historical groundwater levels and validated against another eleven-year dataset. The effects of pumping on groundwater levels and seawater intrusion were investigated. Results showed that reducing the pumping from Khalbha well field will help to reduce the seawater intrusion into the southeastern part of the aquifer. Under the current groundwater pumping rates, the seawater will continue to migrate inland.  相似文献   

7.
Predicting the extent of saltwater intrusion (SWI) into coastal aquifers in response to changing pumping patterns is a prerequisite of any groundwater management framework. This study investigates the feasibility of using support vector machine regression (SVMr), an innovative artificial intelligence-based machine learning algorithm for predicting salinity concentrations at selected monitoring wells in an illustrative aquifer under variable groundwater pumping conditions. For evaluation purpose, the prediction results of SVMr are compared with well-established genetic programming (GP) based surrogate models. SVMr and GP models are trained and validated using identical sets of input (pumping) and output (salinity concentration) datasets. The trained and validated models are then used to predict salinity concentrations at specified monitoring wells in response to new pumping datasets. Prediction capabilities of the two learning machines are evaluated using different proficiency measures to ensure their practicality and generalisation ability. The performance evaluation results suggest that the prediction capability of SVMr is superior to GP models. Also, a sensitivity analysis methodology is proposed for assessing the impact of pumping rates on salt concentrations at monitoring locations. This sensitivity analysis provides a subset of most influential pumping rates, which is used to construct new SVMr surrogate models with improved predictive capabilities. The improved prediction capability and the generalisation ability of the SVMr models together with the ability to improve the accuracy of prediction by refining the input set for training makes the use of proposed SVMr models more attractive. Prediction models with more accurate prediction capability makes it potentially very useful for designing large scale coastal aquifer management strategies.  相似文献   

8.
In the densely populated coastal regions of the world, loss of groundwater due to seawater intrusion, driven by changes of climate, sea level, land use and water use, may critically impact many people. We analytically investigate and quantify the limits constraining a coastal aquifer’s sustainable management space, in order to avoid critical loss of the coastal groundwater resource by seawater intrusion. Limiting conditions occur when the intrusion toe reaches the pumping wells, well intrusion, or the marine-side groundwater divide, complete intrusion; in both cases the limits are functions of the seaward groundwater flow remaining after the human groundwater extractions. The study presents a screening-level approach to the quantification of the key natural and human-determined controls and sustainability limits for the human use of coastal groundwater. The physical and geometrical characteristics of the coastal aquifer along with the natural conditions for recharge and replenishment of the coastal groundwater are the key natural controls of the sustainable management space for the latter. The groundwater pumping rates and locations are the key human-determined controls of this space. The present approach to combining and accounting for both of these types of controls is simple, yet general. The approach is applicable across different scales and regions, and for historic, current and projected future conditions of changing hydro-climate, sea level, and human freshwater use. The use of this approach is also concretely demonstrated for the natural and human-determined controls and limits of the sustainable management space for two specific Mediterranean aquifers.  相似文献   

9.
ABSTRACT

The only means of moderating alarming depletion rates in many of the world’s major aquifers is to reduce pumping. We apply a new water-balance approach to assess the impact of pumping reductions in a portion of the High Plains aquifer in the United States. Although projected aquifer responses to pumping reductions vary, practically achievable reductions would have a large impact throughout the area. These findings demonstrate that modest pumping reductions could greatly enhance prospects for groundwater-supported irrigation in the High Plains aquifer and similar aquifers elsewhere.  相似文献   

10.
A three-dimensional numerical model for flow and solute transport was used for the management of the Salalah aquifer. The model calibration procedures consisted of calibrating the aquifer system hydraulic parameters by history matching under steady and transient conditions. The history of input and output of the aquifer were reconstructed in a transient calibration from 1993 to 2005. Predictive simulation of the aquifer was carried out under transient conditions to predict the future demand of groundwater supply for the next 15 years. A baseline scenario was worked out to obtain the piezometric surface and salinity distribution for the “business as usual” conditions of the aquifer. The “business as usual” scenario was predicted and simulated for the period 2006 until 2020. The effectiveness of seven management options was proposed and assessed for comparison with the “business as usual” conditions. The established simulation model was used to predict the distribution of the piezometric surface, salinity distribution, and mass balance under the proposed scenarios for the prediction period 2006–2020. The scenarios were: (1) relocate Garziz and MAF farms far from the freshwater zone, (2) suspend the abstraction of grass production for 4 months a year, (3) changes in agricultural and irrigation system patterns, (4) establish a desalination plant, (5) combined scenario (1 + 4), (6) combined scenario (1 + 3), and (7) combining all scenarios (1 + 2 + 3 + 4). The result of the simulation shows that the best effective option in terms of aquifer groundwater levels is the fifth proposed scenario and the sixth proposed scenario is the best effective option in terms of aquifer groundwater salinity situation during the next 15 years. This project suggested the application of scenario 6 as it is environmentally sound in terms of sustainable management. A prediction has been made which shows that further actions have to be taken within the next two decades to ensure continuity of the municipal water supply. The management scenarios are examined in the case of the Salalah coastal aquifer using groundwater simulation, which can also be applied to other regions with similar conditions. The established model is considered a reasonable representation of the physical conditions of the Salalah plain aquifer, and can be used as a tool by the water and environmental authorities in the management of the groundwater in the region.  相似文献   

11.

In pumping optimization of coastal aquifers, the evaluation of the objective function and constraints using density-dependent models is overwhelmed by complex and time-consuming numerical simulations. To address those cases where the available density-dependent model runs are very limited, due to excessive computational burden, an efficient optimization strategy is developed. The proposed methodology uses an efficient sharp interface model jointly with a complex density-dependent model in an evolutionary optimization algorithm. While most evaluations are based on the sharp interface model, the density-dependent model is selectively called to evaluate promising solutions and to improve the predictions of the sharp interface model through the adaptive modification of the saltwater-freshwater density ratio. The method is tested for pumping optimization problems in confined and unconfined coastal aquifers with multiple pumping wells. The optimal solutions are compared to those obtained by density-dependent as well as by sharp interface optimization alone. Under a very restrictive computational budget, the best feasible solution is attained in less than 25 density-dependent model runs for two optimization problems of 10 and 20 decision variables. The results indicate that this optimization method leads to good feasible solutions and that an improved estimation of optimal pumping rates can be achieved within a limited computational budget. The method could also stand as an efficient preliminary exploration of the optimal search space, to provide good feasible starting points for the implementation of more comprehensive methods of coastal aquifer management.

  相似文献   

12.
A Suitable Tool for Sustainable Groundwater Management   总被引:1,自引:0,他引:1  
Artificial recharge is used to increase the availability of groundwater storage and reduce saltwater intrusion in coastal aquifers, where pumping and droughts have severely impaired groundwater quality. The implementation of optimal recharge methods requires knowledge of physical, chemical, and biological phenomena involving water and wastewater filtration in the subsoil, together with engineering aspects related to plant design and maintenance operations. This study uses a novel Decision Support System (DSS), which includes soil aquifer treatment (SAT) evaluation, to design an artificial recharge plant. The DSS helps users make strategic decisions on selecting the most appropriate recharge methods and water treatment technologies at specific sites. This will enable the recovery of safe water using managed aquifer recharge (MAR) practices, and result in reduced recharge costs. The DSS was built using an artificial intelligence technique and knowledge-based technology, related to both quantitative and qualitative aspects of water supply for artificial recharge. The DSS software was implemented using rules based on the cumulative experience of wastewater treatment plant engineers and groundwater modeling. Appropriate model flow simulations were performed in porous and fractured coastal aquifers to evaluate the suitability of this technique for enhancing the integrated water resources management approach. Results obtained from the AQUASTRESS integrated project and DRINKADRIA IPA CBC suggest the most effective strategies for wastewater treatments prior to recharge at specific sites.  相似文献   

13.

Sustainable groundwater management requires approaches to assess the influence of climate and management actions on the evolution of groundwater systems. Traditional approaches that apply continuity to assess groundwater sustainability fail to capture the spatial variability of aquifer responses. To address this gap, our study evaluates groundwater elevation data from the Coachella Valley, California, within a groundwater sustainability framework given the adoption of integrative management strategies in the valley. Our study details an innovative approach employing traditional statistical methods to improve understanding of aquifer responses. In this analysis, we evaluate trends at individual groundwater observation wells and regional groundwater behaviors using field significance. Regional elevation trends identified no significant trends during periods of intense groundwater replenishment, active since 1973, despite spatial variability in individual well trends. Our results illustrate the spatially limited effects of groundwater replenishment occur against a setting of long-term groundwater depletion, raising concerns over the definition of sustainable groundwater management in aquifer systems employing integrative management strategies.

  相似文献   

14.
A Cost-Effective Method to Control Seawater Intrusion in Coastal Aquifers   总被引:5,自引:1,他引:4  
Intrusion of seawater into coastal aquifers is considered one of the most important processes that degrade water-quality by raising the salinity to levels exceeding acceptable drinking standards. Therefore saltwater intrusion should be prevented or at least controlled to protect groundwater resources. This paper presents a cost-effective method to control seawater intrusion in coastal aquifers. This methodology ADR (Abstraction, Desalination and Recharge) includes; abstraction of saline water and recharge to the aquifer after desalination. A coupled transient density-dependent finite element model is developed for simulation of fluid flow and solute transport and used to simulate seawater intrusion. The simulation model has been integrated with an optimization model to examine three scenarios to control seawater intrusion including; abstraction, recharge and a combination system, ADR. The main objectives of the models are to determine the optimal depths, locations and abstraction/recharge rates for the wells to minimize the total costs for construction and operation as well as salt concentrations in the aquifer. A comparison between the combined system (ADR) and the individual abstraction or recharge system is made in terms of total cost and total salt concentration in the aquifer and the amount of repulsion of seawater achieved. The results show that the proposed ADR system performs significantly better than using abstraction or recharge wells alone as it gives the least cost and least salt concentration in the aquifer. ADR is considered an effective tool to control seawater intrusion and can be applied in areas where there is a risk of seawater intrusion.  相似文献   

15.
Groundwater is the main water resource in many semi-arid coastal regions and water demand, especially in summer months, can be very high. Groundwater withdrawal for meeting this demand often causes seawater intrusion and degradation of water quality of coastal aquifers. In order to satisfy demand, a combined management plan is proposed and is under consideration for the island of Santorini. The plan involves: (1) desalinization (if needed) of pumped water to a potable level using reverse osmosis and (2) injection into the aquifer of biologically-treated waste water. The management plan is formulated in a multi-objective, optimization framework, where simultaneous minimization of economic and environmental costs is desired, subject to a constraint so that cleaned water satisfies demand. The decision variables concern the well locations and the corresponding pumping and recharging rates. The problem is solved using a computationally efficient, multi-objective, genetic algorithm (NSGAII). The constrained multi-objective, optimization problem is transformed to an unconstrained one using a penalty function proportional to constraint violation. This extends the definition of the objective function outside the domain of feasibility. The impact of prolonged droughts on coastal aquifers is investigated by assuming various scenarios of reduced groundwater recharge. Water flow and quality in the coastal aquifer is simulated using a three-dimensional, variable density, finite difference model (SEAWAT). The method is initially applied to a test aquifer and the trade-off curves (Pareto fronts) are determinedl for each drought scenario. The trade-off curves indicate an increase on the economic and environmental cost as groundwater recharge reduces due to climate change.  相似文献   

16.
衡水地区地下水普遍存在"上咸下淡"的水质格局,受深部淡水持续超采影响,浅层咸水有逐年下移而使淡水咸化的趋势。选择衡水地区典型剖面,通过水质长期监测,结合地下水开采情况,分析2011至2014年该剖面上地下水水位与水质监测资料,总结了衡水地区地下水水化学特征及其演化规律。研究结果表明,浅层含水层中水平径流微弱,地下水水质由西向东逐渐好转,其中西部地下水离子浓度变化较大;深部含水层中水平径流明显,地下水水质整体良好,但有逐年恶化的趋势;人类开采活动一定程度上增强了浅层和深层含水层间的水力联系,使二者中离子浓度随时间的波动呈现出一定的相关性。  相似文献   

17.

Groundwater is a primary source of drinking water in the Mediterranean, however, climate variability in conjunction with mismanagement renders it vulnerable to depletion. Spatiotemporal studies of groundwater recharge are the basis to develop strategies against this phenomenon. In this study, groundwater recharge was spatiotemporally quantified using the Soil and Water Assessment Tool (SWAT) in one coastal and one inland hydrological basin in Greece. A double calibration/validation (CV) procedure using streamflow data and MODIS ET was conducted for the inland basin of Mouriki, whereas only ET values were used in the coastal basin of Anthemountas. Calibration and simulation recharge were accurate in both sites according to statistical indicators and previous studies. In Mouriki basin, mean recharge and runoff were estimated as 16% and 9%, respectively. In Anthemountas basin recharge to the shallow aquifer and surface runoff were estimated as 12% and 16%, respectively. According to the predicted RCP 4.5 and 8.5 scenarios, significant variations in groundwater recharge are predicted in the coastal zone for the period 2020–2040 with average annual recharges decreasing by 30% (RCP 4.5) and 25% (RCP 8.5). Variations in groundwater recharge in the inland catchment of Mouriki were insignificant for the simulated period. Anthemountas basin was characterized by higher runoff rates. Groundwater management in coastal aquifers should include detailed monitoring of hydrological parameters, reinforced groundwater recharge during winter and reduced groundwater abstraction during summer depending on the spatiotemporal distribution of groundwater recharge.

  相似文献   

18.
Aquifer recharge rates and patterns are often uncertain, especially in arid areas due to sporadic and erratic rainfall. Therefore, determining the optimal groundwater abstraction using classical approaches such as Monte Carlo Simulation (MCS) requires a large number of groundwater simulations and exorbitant computational efforts. The problem becomes even more complex and time consuming for regional coastal aquifers whose domains must be discretized using high-resolution meshes. In fact, even fast evolutionary multi-objective optimization techniques generally require a large number of simulations to determine the Pareto-front among the objectives. This study explores the performance of a Decision Tree (DT) approach for the generation of the Pareto optimal solutions of groundwater extraction. This paper applies the DTs for the optimal management of the Al-Khoud coastal aquifer in Oman. The learning process of the developed DT-based model uses the output of a numerical simulation model to assess the aquifer response based on different abstraction policies. The trained DT network then utilizes the NSGA-II to determine the Pareto-optimal solutions. The simulation show that the general flux pattern in the study area is toward the sea and the hydraulic head following a similar pattern in both best and worst recharging scenarios downstream of the studied recharging dam. Statistical tests showed a good correlation between the DT-based and simulation-based results and demonstrate the capability of the DT approach to obtain high-quality solutions by incorporating a large number of recharge scenarios. Moreover, the required runtime of the DT-based approach is extremely low (5 min) compared to that of the simulation-based method (several days). This means that including additional Monte-Carlo simulations can be readily done in few minutes using the obtained DTs, instead of the long computational time needed by the simulation-based approach.  相似文献   

19.
A transient simulation model characterizing groundwater flow in the coastal aquifer of Rhis-Nekor was constructed and calibrated. The flow model was then used in conjunction with a genetic algorithm based optimization model to explore the optimal pumping schemes that meet current and future water demands while minimizing the risks for several adverse environmental impacts, such as saltwater intrusion prevention, avoiding excessive drawdown, as well as controlling waterlogging and salinity problems. Modeling results demonstrate the importance of this combined simulation-optimization methodology for solving groundwater management problems associated with the Rhis-Nekor plain.  相似文献   

20.
Two pumping tests were performed in the unconfined Motril-Salobreña detrital aquifer in a 250 m-deep well 300 m from the coastline containing both freshwater and saltwater. It is an artesian well as it is in the discharge zone of this coastal aquifer. The two observation wells where the drawdowns are measured record the influence of tidal fluctuations, and the well lithological columns reveal high vertical heterogeneity in the aquifer. The Theis and Cooper-Jacob approaches give average transmissivity (T) and storage coefficient (S) values of 1460 m2/d and 0.027, respectively. Other analytical solutions, modified to be more accurate in the boundary conditions found in coastal aquifers, provide similar T values to those found with the Theis and Cooper-Jacob methods, but give very different S values or could not estimate them. Numerical modelling in a synthetic model was applied to analyse the sensitivity of the Theis and Cooper-Jacob approaches to the usual boundary conditions in coastal aquifers. The T and S values calculated from the numerical modelling drawdowns indicate that the regional flow, variable pumping flows, and tidal effect produce an error of under 10 % compared to results obtained with classic methods. Fluids of different density (freshwater and saltwater) cause an error of 20 % in estimating T and of over 100 % in calculating S. The factor most affecting T and S results in the pumping test interpretation is vertical heterogeneity in sediments, which can produce errors of over 100 % in both parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号