首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
将溃坝模型和传统一维非恒定流模型相结合,建立了溃坝洪水演进数学模型.采用DEM数字模型插值技术快速获取计算断面地形,能适合于资料缺乏情况下的应急模拟计算.运用该模型,对栽唐家山堰塞湖应急除险工程堰塞坝下游洪水演进过程进行了复演计算,验证结果表明计算的水位、流量过程与实测情况符合较好,从而证明了模型的可靠性.  相似文献   

2.
徐照明  王永忠  宁磊 《人民长江》2008,39(22):86-88
通过溃坝计算可以对堰塞坝的溃决影响作出定量估计,以制定有效的除险方案和避险措施。采用MIKE 11溃坝洪水计算模型,对唐家山堰塞湖不同溃决历时、溃口形状及溃口发展过程情况下的溃坝洪水进行了计算分析,并对河道糙率、通口电站滞洪、干流洪水遭遇等条件进行了敏感性分析。通过上述计算分析,提高了对溃坝洪水及下游洪水演进的基本认识。  相似文献   

3.
唐家山堰塞湖溃坝洪水分析及泄流冲刷模拟   总被引:1,自引:0,他引:1  
土石坝溃坝数学模型BRESZHU建立在溃坝试验及原型溃坝案例中所观察到的溃坝机理基础之上。模型先后用不同国家的多组溃坝试验资料进行率定和验证,并被成功应用于原型堤坝溃决案例的模拟,结果良好。“5·12”地震唐家山堰塞湖险情发生后,其不断升高的水位和不断增大的湖容给下游百万群众的生命财产安全造成了巨大威胁。运用BRESZHU模型并结合坝下游溃坝洪水演进模型针对堰塞湖上游可能出现的不同频率洪水、坝体的不同溃决方案和不同溃决过程等对数10种工况下唐家山堰塞湖的调洪、溃坝及洪水传播过程进行了计算与分析,为抢险方案和应急预案的制定提供了有力的技术支持。险情结束后运用BRESZHU模型及时对湖水下泄过程中泄流渠断面发展及坝址处洪水过程等进行了模拟,结果表明模型计算的下泄洪水过程(水位、流量)及泄流渠断面发展等与实测情况符合较好。  相似文献   

4.
为高效准确地计算堰塞湖溃坝洪水演进过程,采用基于GPU加速技术的二维水动力模型模拟了2018年金沙江"10·10"与"11·3"白格堰塞湖溃坝洪水演进过程,并将模拟流量过程结果与下游叶巴滩、苏洼龙的实测流量结果进行了对比。模拟结果表明:对于无高精度地形资料的山区,该二维水动力模型可以较好地模拟溃坝洪水演进过程。在计算效率方面,在462万网格的地形数据上模拟40 h洪水演进过程,两次模拟事件分别耗时61 min和74 min。可见该二维水动力模型在模拟洪水演进时非常高效,对洪水应急抢险事件可做到快速预测,为决策者提供有力的数据支撑。  相似文献   

5.
基于唐家山堰塞坝溃决的实测数据,使用BREACH模型及中国水科院DB-IWHR模型,对唐家山堰塞坝溃决过程进行了反演分析,并对两种模型进行参数敏感性分析。研究结果表明:使用针对唐家山的参数,两种模型均可较好地反演唐家山溃决洪水的过程,BREACH模型的下游坡比和孔隙率是对结果影响比较敏感的输入参数;DB-IWHR模型在冲刷参数和下游水深计算两方面做了改善,较好地解决了这一问题;DB-IWHR提供了一个Excel格式的计算软件,数值分析稳定性好,使用简洁客观,可供类似堰塞湖应急处置时参考。  相似文献   

6.
准确及时的信息获取是开展堰塞湖灾变过程预测、溃决洪水演算、风险评估和应急处置的先决条件,溃决洪水预测则是风险评估和应急处置的技术支撑。以2018年秋在金沙江白格和雅鲁藏布江米林前后发生的4次堰塞湖及其应急处置工作为背景,分析介绍了堰塞湖应急处置的现状和存在的问题,归纳总结了在管理实践中堰塞湖在信息获取、洪水预测及其风险评估等方面积累的经验和技术手段。根据这些应急处置中相关信息获取和洪水预测技术的应用效果,提出了今后应加强的技术领域,以期为今后类似突发的堰塞湖应急处置提供借鉴。  相似文献   

7.
准确预测堰塞湖溃坝洪水流量过程在堰塞湖应急抢险过程中极其重要。以白格堰塞湖下游水文站实测的洪水过程为依据,通过DB-IWHR溃坝洪水分析程序和GST洪水演进模型,分别采用不同冲刷侵蚀参数对"10·10"白格堰塞湖漫顶自然泄流过程进行了反演分析。结果发现:冲刷参数a=1.100 0、b=0.000 6时,叶巴滩、拉哇水文站模拟结果与实测流量结果最为接近。由此判断"10·10"白格堰塞湖溃决洪峰流量为10 882.78 m~3/s,溃决历时6.2 h到达洪峰流量,最终溃口水面宽度为99.66 m。运用DB-IWHR溃坝洪水分析程序结合基于GPU加速技术的GST洪水演进模型,计算效率得以大大提高,可以在应急抢险工作中实现快速、精准的预测。  相似文献   

8.
为全面评价尾砂库溃坝风险,主动应对可能出现的溃坝事故灾难,以黄荆坝尾砂库为例,建立溃坝洪水演进数学模型,经过模拟分析,得出了溃口流量过程和重要区域淹没情况.结果表明,溃坝初期溃口流量不断增加,随着库水位不断降低,溃口流量随后逐渐减小;黄荆坝上游来水越大,尾矿库发生溃决的的时间越短,淹没范围和淹没水深越大.  相似文献   

9.
李书飞  胡维忠 《人民长江》2008,39(22):73-75
确定起溃水位在溃坝洪水分析计算中十分重要。在唐家山堰塞湖可能起溃水位分析研究中,采用堰流公式法、渠道水面线法和MIKE 11模型等3种方法进行了泄流渠过流能力计算,分析计算可能起溃水位的影响。在此基础上,分析了开挖泄流渠、扩宽泄流渠渠底以及降低泄流渠渠底高程对降低可能起溃水位的效果。计算分析表明从符合实际情况和偏安全的角度出发,在可能起溃水位分析采用渠道水面线法较合适。降低泄流渠的底高程扩宽渠底与宽度比,更能降低起溃水位。在唐家山堰塞湖开挖泄流方案制定中,应尽可能降低泄流渠渠底高程,从而降低起溃水位和可泄水量,减轻溃坝洪水对下游人民生命财产的威胁。  相似文献   

10.
为提高花凉亭水库大坝安全管理水平和应对突发事件的能力,增强溃坝和超标准泄洪等突发事件防控能力,确保下游生命财产安全,维持社会经济可持续发展,针对花凉亭水库3种溃坝洪水工况,采用BREACH-MIKE21耦合模型,对坝址溃口流量及溃坝下泄洪水演进进行了分析计算及灾后损失评估,结果表明:花凉亭水库遭遇10 000年一遇校核洪水导致漫顶溃坝为最不利溃坝工况,该工况下,水库下游溃坝洪水淹没面积共956.44 km2,坝址处洪峰流量达到66 213 m3/s,最大淹没水深为17.61 m, 7 h后洪水将到达距坝址最远处控制断面,预估受灾人口接近69.45万人,预估损失GDP达到287.54亿元。计算结果可为溃坝洪水灾害预防,提高大坝安全管理应急预案的可行性及有效性提供支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号