首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
覆盖层是一种常见的、典型的复杂坝基,具有强透水性,对大坝渗流场安全有显著影响。结合某一建于深厚覆盖层上的面板堆石坝,运用有限元方法,建立三维渗流分析模型,分析覆盖层的渗透性强弱以及覆盖层渗透各向异性对大坝和坝基渗流场安全的影响。结果表明,覆盖层渗透性是坝基渗流控制较敏感因素,覆盖层渗透系数k较大时(k1×10-5m/s),覆盖层渗透性成为地基渗流的控制因素,防渗墙完全截断覆盖层时,才能取得较好的防渗效果。覆盖层渗透各向异性对各坝基渗流有一定影响。  相似文献   

2.
在深厚覆盖层上建坝,基础的防渗是主要的技术问题,其直接影响大坝的稳定。结合某工程实例,应用有限元分析方法,分析了覆盖层铺盖长度对深厚覆盖层坝基渗流控制效果的影响,得出水平铺盖的渗流控制效果,并对铺盖的长度进行探讨。结果表明,当覆盖层地基渗透系数较大时,采用水平铺盖可以减少渗流量,但是即使当铺盖长度达到4倍上游水头,其渗流控制效果仍有限,继续延长铺盖对渗流量基本无影响,单纯依靠铺盖并不能有效控制坝基渗流。  相似文献   

3.
随着大坝建设的发展,越来越多的面板堆石坝建立在覆盖层地基之上,防渗墙成为覆盖层地基中主要采用的防渗措施。由于覆盖层规模巨大,有时不得不采用悬挂式防渗墙。结合工程实例,采用有限元方法,分析不同防渗墙深度下,大坝和地基的水头线、渗流量以及水力坡降等渗流要素,从防渗墙渗流控制效果的角度探讨覆盖层地基中防渗墙的合理深度。结果表明:当覆盖层渗透系数较大时,防渗墙最好截断覆盖层插入基岩才能取得较好的防渗效果,当覆盖层无法被截断时,防渗墙深度取覆盖层深度的0.7倍较为合理。  相似文献   

4.
 深厚覆盖层广泛分布于我国大江大河中,开展其研究对加快我国水利水电工程建设具有重大意义。在深厚覆盖层地基上建坝首要解决的是大坝的基础防渗问题。对工程算例进行了二维渗流场数值分析,结果表明:在深厚覆盖层地基上延长水平黏土铺盖至4倍上游水头可以减少渗漏量;大于4倍上游水头时,继续增加铺盖长度对渗流量无影响;只有当混凝土防渗墙深度大于3/4倍地基覆盖层厚度时才能取得较好的防渗效果;当防渗墙完全封闭覆盖层时能够可靠、有效地截断水流。  相似文献   

5.
无限深透水坝基上悬挂式防渗墙控渗试验研究   总被引:3,自引:0,他引:3  
无限深透水地基上巨厚覆盖层的渗流控制是大坝建设成败的关键问题之一。悬挂式防渗墙已在许多此类工程中使用,但其控渗效果和渗流机理的分析研究仍未达成共识。为了进一步研究悬挂式防渗墙的渗流机理和控渗效果,应用无限单元和有限单元结合法来模拟无限深透水地基,分析不同渗透系数、防渗墙深度和水头差时坝基渗流量和渗透坡降的变化规律,拟合出精度较高计算式,并通过渗流槽模型试验进行了验证。分析研究发现,悬挂式防渗墙在控制无限深透水地基渗透坡降方面效果明显,能有效遏制渗透破坏;在控制渗流量方面,悬挂式防渗墙深度越大效果越明显,但需要辅助措施联合控制才能实现经济合理、技术可行的目标。分析研究结果有利于进一步认清悬挂式防渗墙的控渗规律。  相似文献   

6.
徐颖  王伟  李艳玲  杨哲  卢祥 《人民长江》2022,53(7):181-186
为了研究双排防渗墙的间距、深度、渗透系数等因素对防渗效果的影响规律,采用有限元分析软件ABAQUS对瀑布沟砾石土心墙坝双排防渗墙的各种布置方案进行渗流计算和对比分析,得出不同渗透系数组合和墙底帷幕深度组合下的坝基渗流分布规律。结果表明:当防渗墙渗透系数小于10-7 cm/s时,主、副墙渗透系数变化对坝基渗流分布影响不大;当防渗墙渗透系数大于10-7 cm/s时,主、副墙渗透系数比值越大,副墙水头折减和所承受的水力梯度越大,墙间水位越低。当防渗墙下接帷幕未深入新鲜基岩时,主、副墙下帷幕深度比值越大,主墙水头折减和所承受的水力梯度越大,墙间水位越高;当帷幕深度深入新鲜基岩后,继续增大帷幕深度,对坝基渗流分布无明显影响。研究成果可为深厚覆盖层上高土石坝双排防渗墙的布置设计提供有益参考。  相似文献   

7.
小浪底大坝基础渗流稳定性分析   总被引:2,自引:0,他引:2  
选择小浪底大坝基础覆盖层有代表性的渗压计进行渗流稳定分析,计算了水平铺盖和混凝土防渗墙的防渗效果、以及基础覆盖层的渗透比降,分析了坝基渗流量与防渗墙上游渗压计测值的相关关系。分析结果表明,小浪底大坝基础渗流是稳定的。  相似文献   

8.
李静琪 《红水河》2009,28(4):96-99
水电站工程大坝、防渗墙、围堰和厂房基础均坐落在覆盖层之上,覆盖层存在不均匀沉降和渗透稳定的问题.文中在充分考虑坝区地质条件的基础上,采用三维有限单元法计算分析设置防渗墙后渗流场的渗流特性,并通过变换防渗墙的渗透系数,对于防渗墙的渗透性对整个渗流场的影响进行了较为深入的敏感性分析.计算结果表明在考虑防渗墙周围岩土的渗透性和确定防渗墙的长度和深度的基础上,合理确定防渗墙渗透系数尤为关键,以安全、经济地设置防渗系统.  相似文献   

9.
李榕  姚颖  胡著秀  张建海  詹国强  周涛 《红水河》2010,29(5):43-46,67
采用有限元法,对斜卡水电站面板堆石坝进行了三维渗流计算分析,讨论了面板、防渗墙出现裂缝及帷幕灌浆劣化、帷幕减薄对三维渗流场分布和渗流量的影响。计算结果表明,由于斜卡坝址覆盖层深厚(45~100 m),加之基岩渗透性强,防渗墙和帷幕上下游水头差大,正常运行方案渗流量可达0.642 m3/s。面板和防渗墙出现裂缝对大坝整体渗流场影响较小,而通过坝面和防渗墙的流量显著增大;帷幕劣化或变薄使坝基渗流量明显增加。加厚帷幕和减小其渗透系数是加强防渗效果的有效措施。  相似文献   

10.
在深厚覆盖层上建坝,坝基防渗是工程成败的关键。采用有限元软件Seep/w分析强、弱透水层二元结构深厚覆盖层上土石坝渗流问题,研究防渗墙深度及形式对大坝渗流量、坝基出逸坡降、防渗墙底部渗透坡降的影响规律,对比分析悬挂式防渗墙、半封闭式防渗墙、全封闭式防渗墙对坝基的控渗效果。计算结果表明:防渗墙穿过弱透水层,悬挂式防渗墙转为半封闭式防渗墙,坝基渗流、坝基出逸坡降显著降低(分别下降54.3%、70.0%)。因此,防渗墙和弱透水层联合防渗能显著提高垂直防渗墙的控渗效果,半封闭式防渗墙的防渗效果大大优于悬挂式防渗墙。二元结构深厚覆盖层上土石坝垂直防渗墙的最优深度为防渗墙刚穿过弱透水层(连续)时的深度;此外,研究还发现当防渗墙将要伸入弱透水层时,防渗墙底渗透坡降急剧上升,出现极大值,工程应用中应引起足够重视,防止发生局部渗透破坏。  相似文献   

11.
文军  李榕  赵诗茹 《红水河》2012,31(3):38-42
斜卡面板堆石坝最大坝高110 m,坝基覆盖层深厚(45~108 m),基岩结构松散,渗透性较强。采用有限元法,对斜卡面板堆石坝及坝基进行了三维渗流及应力应变计算分析,讨论了帷幕厚度、深度与渗透系数对坝基渗流场的影响,分析了防渗墙在施工蓄水过程中的变形趋势以及趾板的沉降规律。结果表明,帷幕是防渗的薄弱环节,帷幕渗透系数增大与深度减小会使总流量显著增加;增大帷幕厚度可较大程度减小渗流量。防渗墙竣工期向上游变位,蓄水期受水推力作用向下游变形。防渗墙与连接板接合部位发生错动,但量值不大。  相似文献   

12.
以吴家园水库大坝为例,采用渗流有限元分析方法,分析混凝土防渗墙的质量缺陷对大坝渗流控制的影响,比如出现裂缝、墙体渗透系数增大、墙体悬挂等情况。分析结果表明,若防渗墙正常,防渗能满足工程安全要求;若防渗墙出现缺陷,则对坝体各部位的渗透坡降都有很大影响。其中防渗墙出现裂缝的位置比裂缝的宽度对渗流控制的影响更大,防渗墙悬挂比墙体渗透系数增大对渗流控制的影响更大。  相似文献   

13.
西藏老虎嘴水电站左岸渗流控制优化   总被引:8,自引:1,他引:7  
沈振中  张鑫  陆希  魏坚振 《水利学报》2006,37(10):1230-1234
西藏巴河老虎嘴水电站左岸副坝、防渗系统、围堰和厂房等均坐落在最深达206m的覆盖层之上。根据其工程地质条件,建立了能够反映其主要工程地质构造和坝基面几何形状的三维有限元模型,详细分析了其防渗墙的长度、深度以及覆盖层渗透性对下坝址左岸坝基渗流场的影响,提出布置长300m、深80m的悬挂式混凝土防渗墙或防渗帷幕的渗流控制优化设计方案,并建议采取反滤防护工程措施保护下游出逸面岸坡。  相似文献   

14.
以往对于土石坝渗流计算都是假定防渗体是完全不透水的,这样的计算结果难免会出现偏差。本文通过赋予悬挂式防渗墙合理渗透系数的情况下,利用有限元法对无限深透水地基上的土石坝建立数学模型进行理论计算。通过对比两种悬挂式防渗墙方案,选取不同深度进行渗流计算和分析。结果表明:防渗墙的位置越靠近上游防渗效果越好,此时防渗墙的有效深度为68倍的坝前水深。  相似文献   

15.
瀑布沟心墙堆石坝是我国目前已建采用宽级配砾石土作为心墙坝防渗料的最高心墙堆石坝。堆石坝坝基为深厚河床覆盖层,最大深度达78 m。坝基覆盖层采用各厚1.2 m的全封闭式混凝土防渗墙防渗。介绍了瀑布沟大坝防渗墙安全监测的情况。监测结果表明,大坝防渗墙工程施工质量优良,性能良好,满足设计要求。瀑布沟堆石坝防渗工程的成功建设把我国防渗墙施工水平提升到了一个新的高度,对今后防渗墙设计与施工具有重大意义。  相似文献   

16.
针对干旱区平原水库渗漏引起的坝后土壤盐渍化问题及防治措施,以恰拉水库为例,基于非饱和渗流理论,运用ABAQUS有限元软件模拟水库在不同防渗措施与截排水系统的联合作用下对坝后地下水埋深的影响。结果表明:通过"上游防渗、下游截排"的形式可以有效的降低坝后农田地下水位,防治土壤发生次生盐渍化。相比无防渗和水平铺盖措施,垂直防渗措施结合截排水系统更能有效地将下游渗流稳定区的地下水位埋深控制在2.67 m,大于周边农田的"临界埋深"(2.45 m)。防渗措施与截水沟的联合作用重点解决了坝后渗漏水的"来源"问题,而排水系统不但可以保证截水沟控渗效果的持续性,还可以解决渗漏水的"去向"问题——坝后截排水系统与农田渠系的结合使坝后渗漏水用于农田灌溉,最终实现了坝后控渗、治理土壤盐渍化体系与农田灌溉体系相结合的理念。  相似文献   

17.
中国西部地区的深厚覆盖层坝基中常存在局部强透水层,其孔隙比大和渗透性强等特点对坝基渗流存在不利影响,是渗流控制中的薄弱环节。基于非饱和土渗流理论,借助有限元软件Seep/w建立数值模型,得出渗流量和坝踵处渗透坡降、出逸坡降,分析强透水层深度、厚度、连续性对渗流场的影响。结果表明:当强透水层深度大于防渗墙时,渗流量和坝踵处渗透坡降随强透水层深度的增大而减小;反之,渗流量则随着强透水层深度的增加而增大,坝踵处渗透坡降先降低后增大。渗流量、坝踵处渗透坡降、出逸坡降皆随着强透水层厚度的增加而增大。渗流量和出逸坡降随着强透水层上游开口长度的增加而增大;坝踵处渗透坡降以上游开口长度50 m为分界线,先增大后降低。渗流量和坝踵处渗透坡降以下游开口长度40 m为分界线,先增大后降低;出逸坡降随强透水层下游开口长度的增加而增大。当防渗墙深度小于55 m时,渗流参数随强透水层底端开口长度的增加而显著增大;当防渗墙深度为60~100 m时,渗流参数仅有较小幅度增大;当采用全封闭式防渗墙时,渗流参数随着底端开口长度的增大反而降低。  相似文献   

18.
深厚覆盖层坝基中存在弱透水层时,弱透水层往往既是隔水层又是软弱夹层,是利用其作为渗流控制依托层,还是不考虑其防渗作用,关系到防渗工程的成本、进度等。流固耦合能较真实反映出弱透水层对坝基渗流场和应力场的影响,该文以比奥固结理论为基础,结合土体非线性流变理论,将土体本构关系推广到黏弹塑性,同时考虑土体力学参数及水力参数的动态变化关系,借助ADINA进行双场耦合求解,分析上江坝深厚覆盖层坝基中弱透水层对土石坝渗流场、应力场和自身应力应变的影响。研究表明:半封闭式防渗墙和弱透水层可形成坝基内部的联合防渗体系,能达到显著的渗流控制效果,大坝渗流量、坝基出逸坡降和弱透水层自身应力应变均小于其允许值,能保证大坝的安全稳定运行。但同时防渗墙和弱透水层承受的应力应变会相对增加,需要采取合理的工程措施给予辅助。实例中防渗墙深度相比封闭式防渗墙减小近60 m,若方案能给与采用,可大大减少工程造价。因此,坝基内部若存在弱透水层应该给与足够的重视,科学论证后若能加以利用,能做到事半功倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号