首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Hydropower dams substantially modify lotic ecosystems. Most studies regarding their ecological impacts are based on large dams and provide little information about the far more abundant effects of small hydropower dams. Our aim was to characterize the ecological effects of a small hydropower dam and run‐of‐the‐river reservoir on the structure of benthic macroinvertebrate assemblages in the Pandeiros River located in the neotropical savanna of Brazil. We tested the hypothesis that benthic macroinvertebrate assemblages in sites directly affected by the dam and reservoir would show a different taxonomic structure compared with those in free‐flowing sites. We expected to find sensitive native species associated with the free‐flowing sites, whereas resistant and non‐native invasive taxa were expected in impounded sites. We also explored associations between the presence of native and non‐native invasive taxa to each habitat type. We found that the structure of benthic macroinvertebrate assemblages was significantly different between free‐flowing and impounded sites. Also, we found that the dam and reservoir facilitated colonization of non‐native invasive species (Corbicula fluminea and Melanoides tuberculata) because only in those sites they were found in high abundance, in contrast to the free‐flowing sites. Although the environmental conditions imposed by the impoundment altered the structure of benthic macroinvertebrate assemblages, the effects were limited to sites closest to the dam. Our results highlight the necessity of understanding physical habitat changes caused by the presence and management of run‐of‐the‐river dams and reservoirs.  相似文献   

2.
Dam removal to restore ecologically impaired rivers is becoming increasingly common. Although the target often is to facilitate fish migration, dam removal has also been assumed to benefit other types of organisms. Because few studies thus far deal with effects of dam removal on stream macroinvertebrates and because results have been equivocal, we investigated both short‐ and longer‐term dam‐removal effects on downstream macroinvertebrate communities. We did this in a before‐and‐after study of the removal of a dam located in a south Swedish stream. We sampled the benthic fauna 6 months before dam removal and both 6 months and 3.5 years after the dam was removed. We compared species composition, taxonomic richness, total densities and densities of macroinvertebrate groups before and after dam removal and between downstream and reference sites. We found that dam removal reduced some macroinvertebrate taxa at the downstream site, but we found no effect on community composition. Although this corroborates results from previous short‐term studies, we also found a reduction of taxonomic richness and that some dam‐removal effects persisted or even increased over time. The most likely explanation for the suppression of benthic macroinvertebrate richness following dam removal is a significantly increased sediment transport from the former reservoir and a subsequent loss of preferred substrates. Our results indicate that adverse dam‐removal effects may be long lasting but taxon specific. We therefore call for longer‐term studies on a variety of organisms to better understand how dam removal may influence downstream macroinvertebrate communities. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The effects of flow releases (daily during spring and four times weekly during summer) from a small impoundment on macroinvertebrate assemblages in the lower Indian River and upper Hudson River of northern New York were assessed during the summers of 2005 and 2006. Community indices, feeding guilds, dominant species and Bray–Curtis similarities at three sites on the Indian River, below a regulated impoundment, were compared with those at four control sites on the Cedar River, below a run‐of‐the‐river impoundment of comparable size. The same indices at four less‐likely affected sites on the Hudson River, below the mouth of the Indian River, were compared with those at an upstream control site on the Hudson River. Results show that the function and apparent health of macroinvertebrate communities were generally unaffected by atypical flow regimes and/or altered water quality at study reaches downstream from both dams in the Indian, Cedar and Hudson Rivers. The lentic nature of releases from both impoundments, however, produced significant changes in the structure of assemblages at Indian and Cedar River sites immediately downstream from both dams, moderate effects at two Indian River sites 2.4 and 4.0 km downstream from its dam, little or no effect at three Cedar River sites 7.2–34.2 km downstream from its dam, and no effect at any Hudson River site. Bray–Curtis similarities indicate that assemblages did not differ significantly among sites within similar impact categories. The paucity of scrapers at all Indian River sites, and the predominance of filter‐feeding Simulium gouldingi and Pisidium compressum immediately below Abanakee dam, show that only minor differences in dominant species and trophic structure of macroinvertebrate communities occurred at affected sites in the Indian River compared to the Cedar River. Thus, flow releases had only a small, localized effect on macroinvertebrate communities in the Indian River. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Damming and regulating the flow of rivers is a widespread issue and can have a significant impact on resident biota. The Tongariro River, central North Island, New Zealand, has a flow regime that is regulated by two hydroelectric dams along its length, and it has been suggested that ‘flushing flows’ would assist benthic communities by removing ‘nuisance’ periphyton growth forms that typically occur in autumn. We assessed whether (i) damming has altered periphyton and macroinvertebrate communities downstream of the Rangipo Dam and (ii) whether the release of a flow pulse equivalent to 50 times the baseflow is sufficient to (a) move the substrate in the section of river downstream of this dam and (b) impact benthic periphyton and macroinvertebrate communities. Downstream macroinvertebrate communities were impacted by the presence of the dam, but periphyton was not. No movement of substrate occurred downstream of the dam as a result of the flow release, which was likely because of naturally high embeddedness and armouring of substrate. Periphyton biomass and macroinvertebrate density were not affected by the release indicating that larger releases would be required to have any effect on benthic communities downstream of this dam. This study highlights the importance of considering natural bed structure and sediment dynamics when using flow releases downstream of dams to control periphyton. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Increased awareness of the negative effects of dams combined with an aging dam infrastructure has led to an increase in dam removals. However, ecological responses of downstream biota to such actions are poorly understood. We examined the influence of a pair of small dam removals on downstream periphyton and macroinvertebrates in Boulder Creek, WI (USA). The dams were 180 m apart and both were removed on 9 July 2003. We monitored algae and macroinvertebrates as well as habitat characteristics for approximately 2 months before and after the removals upstream and downstream from the two dams, and continued our observations over a similar period (mid‐May to mid‐July) the following summer. After the removals, an initial release of sediment significantly increased the proportion of fine sediments in the downstream reach and buried benthic substrate. This burial led to a 60% reduction in chlorophyll in the downstream reach the week following removal, while concentrations increased in the upstream reference reach. Similarly, macroinvertebrate densities 2 weeks post‐removal were lower relative to pre‐removal densities and were associated with declines of ephemeropterans, trichopterans and dipterans. Examination of Trichoptera genera demonstrated substantial changes in this assemblage associated with diminished densities of the formerly dominant genus Brachycentrus. Algal and invertebrate populations increased in the weeks after the dam removal, but did not reach densities similar to the upstream reference reach. In the following year, both periphyton and invertebrate densities were lower in the downstream reach, suggesting a long‐term effect of the removal. Thus, effects of the dam removal were alternatively positive or negative over time, and indicate that the time scale of consideration has a strong effect on the interpretation of the consequences of this management activity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
As more hydroelectric dams regulate rivers to meet growing energy demands, there is ongoing concern about downstream effects, including impacts on downstream benthic macroinvertebrate (BMI) communities. Hydropeaking is a common hydroelectric practice where short‐term variation in power production leads to large and often rapid fluctuations in discharge and water level. There are key knowledge gaps on the ecosystem impacts of hydropeaking in large rivers, the seasonality of these impacts, and whether dams can be managed to lessen impacts. We assessed how patterns of hydropeaking affect abundance, taxonomic richness, and relative tolerance of BMIs in the Saskatchewan River (Saskatchewan, Canada). Reaches immediately (<2 km) downstream of the dam generally had high densities of BMIs and comparable taxonomic diversity relative to upstream locations but were characterized by lower ratios of sensitive (e.g., Ephemeroptera, Plecoptera, and Trichoptera) to tolerant (e.g., Chironomidae) taxa. The magnitude of effect varied with seasonal changes in discharge. Understanding the effects of river regulation on BMI biodiversity and river health has implications for mitigating the impacts of hydropeaking dams on downstream ecosystems. Although we demonstrated that a hydropeaking dam may contribute to a significantly different downstream BMI assemblage, we emphasize that seasonality is a key consideration. The greatest differences between upstream and downstream locations occurred in spring, suggesting standard methods of late summer and fall sampling may underestimate ecosystem‐scale impacts.  相似文献   

7.
River damming reduces the ecological heterogeneity of ecosystems, with a resultant shift of communities adapted to lotic conditions to those better adapted to the newly created lentic environment. Whereas the response of phytoplankton and zooplankton community composition and structure to river damming has been extensively studied in individual reservoirs, this study assessed three cascading reservoirs on the Tana River, Kenya. A total of five sampling campaigns were carried out in 2011, 2012 and 2013 for different sampling sites within each of the reservoirs, as well as upstream and downstream of the reservoirs. Plankton communities within each of the three reservoirs, and upstream of the reservoirs, were compared, indicating (i) the disappearance of 13 phytoplankton and 2 zooplankton taxa; (ii) the appearance (invasion) by 26 phytoplankton and 33 zooplankton taxa; and (iii) an opportunistic presence of 7 phytoplankton and 6 zooplankton taxa. Thirty‐two genera of potentially harmful algae were also encountered, suggesting a potential future threat of harmful algal blooms. A significant reduction in phytoplankton diversity and taxa evenness was also observed, as well as increases in overall abundance in the reservoirs, compared to the river upstream of the study reservoirs. However, these ecological indices were restored to the original levels observed upstream of the study reservoirs at sites hundreds of kilometres downstream of the reservoirs.  相似文献   

8.
The removal of the numerous ageing dams in the United States has become an important stream restoration technique. The extent to which the ecological damage done to streams by dams is reversed upon removal is unknown, especially on decadal time scales. The objectives of this study were to determine if macroinvertebrate assemblages within rivers recover following the removal of a dam and to estimate the time needed for recovery. A space‐for‐time substitution approach was used on eight rivers in various stages of recovery following a dam removal, ranging from <1 to 40 years post‐removal. Within each river, macroinvertebrates were sampled in a zone unaffected by the dam removal (reference zone) and two zones impacted by the dam removal (former impoundment and downstream zone). Insects were identified to the family level and placed into functional feeding groups. Various macroinvertebrate community metrics were compared between impacted and unimpacted zones to evaluate the extent of recovery, and plotted over time since removal to develop a temporal trajectory of recovery. Generally, the macroinvertebrate community recovered 3–7 years following removal both in terms of taxonomic similarity and richness, although densities could take decades to recover. Dam removals are a beneficial restoration technique, yet the recovery of important stream components can be variable and may take longer than previous research has suggested. Having realistic expectations of the ecological ramifications of dam removal efforts is paramount in ensuring the success and thus potential of future projects. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Since the serial discontinuity concept (SDC) of rivers is proposed, few studies have tested it in a highly fragmented river ecosystem. In this study, environmental factors, phytoplankton species richness, and SDC predictions were demonstrated along the 13 cascade dams in a subtropical river (China). Our results indicated that among environmental factors, water temperature and transparency have seasonal differences, and river width has spatial differences; total species richness (TSR) increases from upstream to downstream, and distance is the reason for its variation. In addition, TSR also has spatial variations in each cascade dam, with the maximum or minimum value of each cascade section often occurring near the dam. A predictive model was constructed and revealed that seasonal differences in species richness were more significant than spatial differences, which were mainly observed during wet periods. Taken together, these results suggest that the construction of cascading dams enhances spatial differences in phytoplankton species richness, especially during periods of abundant water. In addition, environmental parameters such as water temperature, pH, and DO and TSR all support SDC predictions. In the future, we will continue to investigate this aquatic ecosystem to study more phytoplankton-related indices affected by the cascade damming, and hope to fully validate the SDC predictions.  相似文献   

10.
Dam removal is an increasingly practised river restoration technique, and ecological responses vary with watershed, dam and reservoir properties, and removal strategies. Moderate‐sized dams, like Hemlock Dam (7.9 m tall and 56 m wide), are large enough that removal effects could be significant, but small enough that mitigation may be possible through a modified dam removal strategy. The removal of Hemlock Dam in Washington State, USA, was designed to limit channel erosion and improve fish passage and habitat by excavating stored fine sediment and reconstructing a channel in the former 6‐ha reservoir. Prior to dam removal, summer daily water temperatures downstream from the dam increased and remained warm long into the night. Afterwards, a more natural diel temperature regime was restored, although daily maximum temperatures remained high. A short‐lived turbidity pulse occurred soon after re‐watering of the channel, but was otherwise similar to background levels. Substrate shifted from sand to gravel–cobble in the former reservoir and from boulder to gravel–cobble downstream of the dam. Initially, macroinvertebrate assemblage richness and abundance was low in the project area, but within 2 years, post‐removal reaches upstream and downstream of the dam had diverse and abundant communities. The excavation of stored sediment and channel restoration as part of the dam removal strategy restored river continuity and improved benthic habitat while minimizing downstream sedimentation. This study provides a comparison of ecological effects with other dam removal strategies and can inform expectations of response time and magnitude. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号