首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 375 毫秒
1.
Barriers to fish movement have been used to prevent the spread of invasive fishes but may also limit the movements of native fishes. We evaluated the potential consequences of a proposed barrier on the Illinois River Waterway, meant to inhibit the spread of silver and bighead carps, to the continued recovery of native fishes in the Des Plaines River following water quality improvements. We compared changes in upstream cumulative species richness and community structure from 1983 to 2013 in the DuPage River, an adjacent tributary with an impassable dam, to the area upstream of a newly proposed barrier on the Des Plaines River where fish can currently pass through a navigational lock. Fewer species displayed truncated distributions upstream of the passable lock and dam (n = 18) compared with the impassable dam (n = 23). Due to water quality improvements in the Illinois River as a whole, cumulative species richness downstream of both dams steadily increased over time. Richness also increased upstream of the passable dam but plateaued upstream of the impassable dam. Fifteen to 18 species accounted for differences in community structure between areas downstream and upstream of either dam. Most species (78–100%) were found in greater relative abundance downstream of the impassable dam, and only 53% were found in greater relative abundance downstream of the passable dam. The truncation in species richness and abundance at the impassable dam foreshadows the potential consequences of an indiscriminate barrier on native fishes and the continued recovery of native assemblages.  相似文献   

2.
Knowledge of how invasive species use invaded habitats can aid in developing management practices to exclude them. Swan Lake, a 1100‐ha Illinois River (USA) backwater, was rehabilitated to restore ecosystem functions, but may provide valuable habitat for invasive bigheaded carps [bighead carp (Hypophthalmichthys nobilis) and silver carp (H. molitrix)]. Use (residency and passages) of Swan Lake by invasive bigheaded carps was monitored using acoustic telemetry (n = 50 individuals/species) to evaluate the use of a large, restored habitat from 2004 to 2005. Passages (entrances/exits) by bigheaded carps were highest in winter, and residency was highest in the summer. Bighead carp backwater use was associated with the differences in temperature between the main channel and backwater, and passages primarily occurred between 18:00 h and midnight. Silver carp backwater use was positively correlated with water level and main channel discharge, and fewer passages occurred between 12:00 h and 18:00 h than during any other time of day. Harvest occurring during summer or high main channel discharge could reduce backwater abundances while maintenance of low water levels could reduce overall backwater use. Conclusions from this study regarding the timing of bigheaded carps' use of backwater habitats are critical to integrated pest management plans to control invasive species. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
The Electric Dispersal Barrier System (EDBS) in the Chicago Sanitary and Ship Canal (CSSC) was built to limit the interbasin transfer of aquatic invasive species between the Mississippi River Basin and the Great Lakes Basin. Commercial barge traffic, or tows, moving downstream through the EDBS can facilitate the upstream passage of small fish through the barrier by reducing the voltage gradient of the barrier and causing localized upstream return currents. This study tested whether it is possible to prevent upstream passage of small fish across the barrier by preventing upstream return currents. Measurements of water velocity, voltage gradient, and tow speed, as well as sonar-based observations of resident fish, were made as a tow transited the EDBS moving downstream. The results indicate that upstream return currents can be prevented for typical flow conditions in the CSSC (ambient velocity = 0.15 to 0.23 m/s) when tow speeds are <0.46 m/s. Similarly, increasing the ambient velocity above typical values can prevent upstream return currents for faster tow speeds and larger tows. Additionally, preventing upstream return currents at the EDBS may reduce, but does not prevent, tow-mediated upstream fish passages because tows also cause a temporary reduction in the streamwise voltage gradient at the EDBS. These results have implications for the management of invasive bigheaded carps in the Illinois Waterway.  相似文献   

4.
Dams have been implicated in the alteration of natural river processes. Quantifying spatial and temporal movement and passage patterns of large river fishes are critical for determining the extent of restricted passage and the needs for fish passage improvements. However, limited information regarding this topic exists because of the inherent difficulties associated with large river systems and assumptions associated with movement studies. Because of this lack of information, we investigated broad scale passage patterns of several riverine fish species through seven locks and dams complexes of the Upper Mississippi River using telemetry. Over the course of our 5‐year evaluation, we observed species‐specific movement and passage patterns, and how these trends were affected by factors such as water level and lock and dam management. Stationary receivers placed in a monitoring array detected a total of 1036 passage events. Eighty‐four percent of the passage occurred through all but one of the lock and dam structures during both open and closed river conditions. While 70% of the passage occurred during open river conditions, further investigation of passages that occurred during closed river conditions (when gates are extended into the water column at some level) revealed that the majority of passage occurred when the average opening for all gates ranged from 0.6 to 1.2 m. Lock usage was also quantified, and most species were not routinely using the lock chambers for passage. Ultimately, these data have shown that individuals of each study species were able to negotiate most of the locks and dams during open and closed river conditions in both directions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Nearly 200 fish were released below Lock and Dam 2 (LD2) in the Upper Mississippi River and tracked to determine both whether and how they passed through this structure, and if passage could be explained using a computational fish passage model (FPM) which combines hydraulics with fish swimming performance. Fish were either captured and released downstream of LD2 in Pool 3 or captured in Pool 2 (upstream of LD2) and displaced below LD2. Tagged fish were tracked using 13 archival receivers located across LD2. Approximately 90% of all fish approached LD2 many times with the displaced species likely attempting to home. Of 112 common carp, 26% passed through LD2 with 15% (most) going through the lock and 6% through the spillway gates. Similar values were seen for bigmouth buffalo. In contrast, although 42% of 31 channel catfish passed through the lock, only 3% went through the gates. Finally, of 22 walleye, only 14% passed through the lock and none through the gates. Ninety percent of all documented passages through the spillway gates occurred when the gates were out of the water and water velocities through these gates were at their lowest levels, an attribute described and predicted by the FPM at LD2. This study strongly suggests that fish passage through spillway gates of LDs is determined by water velocity and can be predicted with a FPM, whereas passage through locks is determined by species‐specific behavioural preferences. Both attributes could be exploited to reduce passage of invasive carp at certain locations.  相似文献   

6.
Successful design and operation of fish passage systems are important to protect fish communities from impacts of hydroelectric dams in the Río de la Plata River basin. We evaluated the performance of an elevator lift system to pass adult fish through Yacyretá dam on the Paraná River between 1995 and 1998, both for mechanical reliability and performance. The elevator lift system was mechanically inoperative 30–38% of the time during the October–December period of greatest fish migration. Target species represented 30% of total fish number in gillnet samples in the tailwater, but constituted only 10% of the total number of fish transferred. Fish collected within the system were dominated by Pimelodus clarias (>69%), although this species represented less than 10% of captures in experimental gillnets set in the tailwater. Prochilodus lineatus, a key species, represented less than 5% of transferred fish, but constituted 22.1% of tailwater samples. Estimated number of fish transferred per year ranged between 1 210 000 (1995) and 3 610 000 (1996) with biomass ranging from 631 to 1989 tons, respectively. We estimated a fish passage efficiency of 1.88% for all species and 0.62% for target species. At this efficiency, transferred species would increase the total fish yield in the reservoir by as much as 4.9 kg/ha/year, but only 0.5 kg/ha/year for target species. We conclude that fish transfer efficiency is inadequate to maintain populations of target species in the Paraná River system. We identify critical research needs to improve the passage of fish at dams. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
The Penobscot River drains the largest watershed in Maine and once provided spawning and rearing habitats to 11 species of diadromous fishes. The construction of dams blocked migrations of these fishes and likely changed the structure and function of fish assemblages throughout the river. The proposed removal of two main‐stem dams, improved upstream fish passage at a third dam, and construction of a fish bypass on a dam obstructing a major tributary is anticipated to increase passage of and improve habitat connectivity for both diadromous and resident fishes. We captured 61 837 fish of 35 species in the Penobscot River and major tributaries, through 114 km of boat electrofishing. Patterns of fish assemblage structure did not change considerably during our sampling; relatively few species contributed to seasonal and annual variability within the main‐stem river, including smallmouth bass Micropterus dolomieu, white sucker Catostomus commersonii, pumpkinseed Lepomis gibbosus, and golden shiner Notemigonus crysoleucas. However, distinct fish assemblages were present among river sections bounded by dams. Many diadromous species were restricted to tidal waters downriver of the Veazie Dam; Fundulus species were also abundant within the tidal river section. Smallmouth bass and pumpkinseed were most prevalent within the Veazie Dam impoundment and the free‐flowing river section immediately upriver, suggesting the importance of both types of habitat that supports multiple life stages of these species. Further upriver, brown bullhead Ameiurus nebulosus, yellow perch Perca flavescens, chain pickerel Esox niger, and cyprinid species were more prevalent than within any other river section. Our findings describe baseline spatial patterns of fish assemblages in the Penobscot River in relation to dams with which to compare assessments after dam removal occurs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Studying fish behaviour at hydropower dams is needed to facilitate the design and improvement of fish passage solutions, but few studies have focused on Atlantic salmon kelts. Here, we used radio telemetry (n = 40, size range = 50–81 cm) and acoustic sonar to study kelt movements in the forebay as well as their dam passage survival and subsequent migration success past multiple dams. We also compare radio telemetry and acoustic sonar observations of fish behaviour and used acoustic sonar to measure the depth distribution of fish approaching the turbine intake zone. Passage success at the dam was 41%, and mortality was largely associated with turbine passage (62%). The two fish that passed via the spill gates survived and continued their downstream migration. At the dam, all but one radio‐tagged kelt approached the intake zone shortly after arrival to the forebay, and sonar data showed that approaching fish were predominantly surface oriented (72%, 88% and 96% of the observations were less than 1, 2 and 3 m deep, respectively). Turbine passage rate from the intake zone was higher at night than at day, indicating that the lack of visual cues may reduce the barrier effect of the 70‐mm conventional trash rack. Turbine passage rate also increased with increasing hydropower generation. The percentage of observed upstream movements away from the intake zone compared with the total number of observations was considerably greater in the radio telemetry data (41%) than in the sonar data (4%). Only one fish survived passage of all eight hydropower dams to reach the lake. This low‐passage survival underscores the need for remedial measures to increase the survival of migrating kelts, and the fish's surface orientation as well as their rapid approach to the intake rack should be taken into account when designing such measures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main‐stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18‐km reach downstream of the dam affected route‐specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub‐surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route‐specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low‐survival or high‐survival passage routes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
某一等枢纽工程设计洪水、校核洪水洪峰流量分别为59700m3/s、67100m3/s,峰高量大。为满足工程运行要求,泄水建筑物共设置了15孔泄洪闸、5孔冲砂闸和1孔围堰改闸。水闸堰型均采用宽顶堰,孔宽不同,堰顶高程各异。现有泄流计算程序多针对单一堰顶高程设计,本工程并不适用。多闸孔、多堰高组合水闸泄流计算是一件繁琐的工作,利用Fortran编写的小程序计算给实际应用带来了极大便利。本文介绍了程序编写的具体过程,并结合具体工程应用实例对程序进行了验证。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号