首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
新疆阿尔塔什水利枢纽工程面板堆石坝坝高164.8 m,地基覆盖层最大厚度94 m,坝体和面板协调变形问题对大坝安全有重要影响。采用三维有限差分软件FLAC~(3D),对阿尔塔什水利枢纽工程深厚覆盖层面板堆石坝在施工期的应力变形进行了分析,结果表明:坝体最大沉降变形发生在1/3坝高位置;坝0+475剖面最大沉降量为0.55 m,覆盖层的变形量为0.32 m,覆盖层变形占坝体最大沉降变形的58%,河床深厚覆盖层产生的压缩变形对坝体的沉降变形影响较大;靠近坝轴线坝体沉降变形随填筑过程发展较快,高程1 680.0~1 736.0 m和高程1 736.0~1 752.0 m坝体填筑过程中沉降速度分别为2~3 cm/8 m和5~6 cm/8 m;数值计算结果与施工期实测沉降变形和变形特征较为吻合。后期施工和大坝运行过程中应对深厚覆盖层的变形加以关注,适当放慢施工进度,对于分期面板浇筑应适当预留一定沉降期。  相似文献   

2.
本文依托河口村水库工程安全监测项目,通过坝基、坝体沉降变形监测资料分析,系统地研究深厚覆盖层面板堆石坝沉降变形变化规律。成果表明:(1)坝基和坝体沉降填筑期随填筑高度增加而增大,静置期随时间增加而增大,整体呈先增加而后减小直至趋于零的趋势;(2)坝基和坝体沉降趋稳,主要受坝基地质情况和坝体填筑高程影响;(3)堆石坝沉降整体与坝型呈不对称分布,其最大沉降量约占坝高的0.72%,符合一般土石坝沉降变形规律。监测成果为保证大坝填料、混凝土面板施工以及评价大坝安全性状提供科学依据,亦可为类似工程提供借鉴和参考。  相似文献   

3.
十三陵抽水蓄能电站上池钢筋混凝土面板堆石坝筑坝料风化严重,沉降变形量极大,通过从设计阶段对坝体沉降变形的认识到对坝体实测变形的较全面的分析和总结,得出如下结论:实测变形与实际填筑情况相一致,基本为上游坝体填筑较下游好,底部较上部好;大坝最大沉降发生在坝轴线附近的1/2坝高处;主压缩变形出现在施工期,坝料随填筑增高而不断发生破碎;坝体填筑完成后,坝体沉降变形仍在继续,这部分变形是蠕变变形.  相似文献   

4.
采用FLAC3D软件,对三板溪水电站混凝土面板堆石坝竣工期和蓄水期的变形与应力进行了数值模拟计算,结果表明,竣工期坝体最大铅直沉降量为110.20 cm,位于约1/2坝高处,沉降量约为坝高的0.54%;考虑蓄水期水压力作用后,在正常蓄水位、设计洪水位和校核洪水位下,最大沉降量为113.20、113.50、141.00 cm,最大沉降量为坝高的0.76%.通过对坝体变形和应力数值计算结果的分析以及坝体变形数值计算值与监测值的对比,说明坝体应力分布是合理的,符合大坝应力分布的一般规律.  相似文献   

5.
夹岩水利枢纽工程挡水大坝采用坝高为154 m的高混凝土面板堆石坝,其面板施工分期高程选择是工程建设的关键技术,将直接影响水库蓄水成败。为确定合适的大坝一、二期面板施工分期高程,通过面板应力变形分析,结合坝体填筑沉降期、面板浇筑施工强度和坝体度汛要求等因素,综合分析选择面板施工分期高程为1 254.0 m(约为坝高50%处)。研究表明,面板施工分期高程成功避开了面板最大变形区,并可满足坝体填筑沉降期、面板浇筑施工强度。在确保工程建设质量的同时,为工程建设进度顺利推进打下了坚实的基础,可供其他类似工程借鉴。  相似文献   

6.
随着坝高的增加,面板坝的填筑方量也随着增大,施工工期也将延长.为了缩短工期以及提高坝体填筑施工的经济性,高面板堆石坝越来越多采用分期施工的方式进行坝体的填筑.坝体的分期填筑相对于全断面填筑使得高面板坝的受力状态更趋于复杂.本文采用数值分析方法,分析坝体分期填筑对面板坝沉降变形的影响.分析表明:坝体分期筑坝,可以缩短工期,使工程尽早投入发电.小断面筑坝对大坝沉降变形的分布有一定影响,特别是断面接触部位可能会有一些突变,但随着大坝的逐步沉降,突变逐步消失.采用分期工时,应注意各时期大坝的预留沉降时间,以进行下一步施工.  相似文献   

7.
为了定量分析堆石料分区及其力学特性差异对面板堆石坝变形的影响,采用非线性有限元法,对坝高200 m级的典型面板堆石坝开展竣工期、蓄水期和变形稳定期的变形计算,重点分析5种不同主、次堆石分区方案和4种不同主、次堆石料模量比方案对大坝变形的影响。通过变形分布规律和极值变化规律对比分析表明:不同主、次堆石区分界对坝体变形分布规律的总体影响较小,坝体沉降极值变化不超10%;蓄水期坝体最大流变约占最大坝高的0.14%;减小次堆石料模量,则坝体流变效应逐渐增强。  相似文献   

8.
由于坝体中某测点最大沉降量与全坝体(高)的沉降量在概念上和数值上完全不同,故将坝体测点最大沉降量视作坝体总沉降量,并以此值与坝高相比作为评价面板堆石坝坝体填筑辗压质量,显然是片面的。采用分层叠加求和法计算大坝沉降量,避免了由于测点安装高程及安装层数的不同导致测值的随机性和人为性,通过求出的坝体沉降量及相对沉降率作为评价依据更具有科学性。  相似文献   

9.
面板坝坝体的沉降和变形影响着混凝土面板的应力和变形,进而影响坝体的安全,高面板坝更是如此.通过对水布垭面板堆石坝在二期面板浇注前的坝体实测沉降结果与计算预测结果以及其它已建高面板坝观测结果比较,得到了高面板堆石坝施工期坝体沉降变形的一般规律.本结论对高面板堆石坝结构设计有参考作用,同时也证明了水布垭面板坝设计理念和施工方法的合理性.  相似文献   

10.
修建在深厚覆盖层上的面板堆石坝地基和部分坝体处于饱和渗流状态,渗流和变形的耦合作用对坝基和坝体的变形具有一定的影响。通过采用Drucker-Prager塑性模型和时间硬化流变模型描述堆石料和覆盖层砂砾石材料的瞬时变形和流变变形,采用Signorini型变分不等式方法描述堆石料和覆盖层多孔介质材料的渗流过程,在此基础上基于动量守恒原理和Kozeny-Carman方程提出覆盖层上面板堆石坝渗流-流变耦合分析方法。基于渗流-流变耦合分析,研究了渗流-流变耦合作用下覆盖层面板堆石坝的力学特性,分析了渗流作用对面板堆石坝长期变形的影响规律,进而讨论了覆盖层上面板堆石坝的变形机制和演化过程。结果表明:覆盖层地基压缩变形使大坝最大变形位置向下移动至0.3倍坝高位置且面板承受较大的拉应力;大坝流变变形是面板堆石坝的重要变形来源,其引起的坝内沉降增量达27.3%,面板拉应力增量达5.1%;渗流效应对大坝流变变形具有一定的影响,但相对于流变效应引起的应力变形增量整体相对较小。  相似文献   

11.
在积石峡水电站面板堆石坝施工中,从断面设计、坝料分区、坝料选用、压实密度、填筑顺序、预留沉降、止水设施和渗流控制等方面对坝体进行了变形控制。监测结果表明,施工期的坝体变形控制效果显著,达到了坝体安全运行的目的。  相似文献   

12.
乌鲁瓦提面板砂砾石坝安全监测分析   总被引:1,自引:0,他引:1       下载免费PDF全文
乌鲁瓦提大坝是国内已建面板砂砾石坝第一高坝.工程配备了较为全面的监测仪器,水库蓄水至今已进行了多年的观测.在介绍埋设在混凝土面板砂砾石坝中的渗流、沉降变形以及面板应力应变等各种监测仪器的作用和功能的基础上,通过对乌鲁瓦提面板坝监测资料全面系统的计算分析,评价了大坝的运行性状.目前大坝沉降已基本稳定,大坝渗流状况发展趋势良好.经过多年高低水位的循环运行,大坝结构性态变化正常,处于安全运行状态.本文为其它工程监测仪器的埋设及相关监测数据的分析提供了借鉴与参考.  相似文献   

13.
我国特高面板堆石坝的建设与技术展望   总被引:2,自引:2,他引:0  
国内2000年后已建和在建的200m级高面板堆石坝,从堆石料原岩选择、孔隙率控制、坝体断面分区、面板和趾板防裂控制等设计技术方面及碾压设备选型、坝体预沉降控制、施工填筑分期等施工技术方面,采取了一系列行之有效的措施,取得了坝体变形小、面板裂缝少等成效。借此,对300m级特高面板堆石坝技术作了设想,提出了尚需研究的课题。  相似文献   

14.
通过积石峡大坝施工期浸水前后的沉降研究,可取得坝体自然状态与浸水期间的变形规律.本文对积石峡面板坝实测沉降进行整理分析并与公伯峡大坝进行对比.得到结果:大坝变形监测仪器工作正常;坝体实测沉降分布规律合理,最大沉降小于可行性研究报告的1%.结果表明:与公伯峡大坝相比,积石峡后期变形明显小,而且坝体沉降收敛速度明显要快,坝体浸水加速坝体沉降变形效果显著.  相似文献   

15.
为了分析挤压边墙的变形特性对混凝土面板的施工及应力变形影响,首次采用瑞士徕卡公司生产的ScanStationP40扫描仪对涔天河面板堆石坝挤压边墙进行3期扫描,将第1期扫描点云数据作为基准数据,将第2期、第3期扫描的点云数据分别与基准数据进行对比分析来获取挤压边墙的变形特性,然后与同期挤压边墙上的棱镜实测数据对比分析。结果表明挤压边墙中上部呈向下游位移的趋势,而下部呈向上游位移趋势;基于三维激光扫描的挤压边墙顺河向位移变化区域大于棱镜实测顺河向位移变化区域;挤压边墙中上部沉降较大,两岸沉降较小,挤压边墙处于变形发展阶段,尚不适合进行面板施工;2种监测手段得到的挤压边墙变形趋势基本一致。说明利用三维激光扫描技术对面板堆石坝挤压边墙表面变形进行监测是可行的,可为类似工程提供参考。  相似文献   

16.
采用拉丁超立方设计选取堆石料参数,并通过有限元计算得到大坝竣工期典型测点沉降,采用响应面法建立二者之间的映射关系,根据工程实测得到的测点沉降结果得到堆石料的模型参数,建立了一种基于响应面法的堆石料参数反演方法。针对紫坪铺面板堆石坝,根据上述方法得到的堆石料参数,进行了汶川地震震害模拟,并与实际震害结果进行了对比分析。计算得到的大坝填筑期典型测点竖向位移发展过程以及地震后大坝永久变形与现场实测结果吻合较好。  相似文献   

17.
柳莹  李江  杨玉生  彭兆轩 《水利学报》2021,52(2):182-193
根据近30年来新疆100 m级以上面板坝建设经验,对坝体填筑标准进行了总结,并结合沉降监测资料,分析了坝高和筑坝材料、施工填筑控制标准、碾压施工参数和运行年限等因素对高面板坝变形控制的影响:(1)对于新疆100~150 m级面板坝,从变形控制的角度看,采用砂砾石填筑的沉降率比采用堆石填筑小0.2%左右,采用砂砾石填筑优于采用堆石填筑;(2)对高震区150 m级以上的高面板砂砾石坝,设计填筑相对密度从不小于0.85提高到0.90必要且可行,且应采用现场原级配大型相对密度试验代替室内相对密度试验方法来确定坝体的填筑标准;(3)提高施工振动碾吨位是减小坝体变形的有效方法,采用目前广泛使用的26 t振动碾,铺料厚度80 cm,碾压8遍,一般能满足150 m级以下面板坝的设计填筑标准要求;对更高的坝建议采用更大吨位的振动碾施工。  相似文献   

18.
巴贡水电站位于马来西亚沙捞越州中部拉让江支流巴鲁伊河上。大坝为混凝土面板堆石坝,坝顶高程为235.00 m,最大坝高202 m,是目前已建和在建的200 m级以上面板堆石坝之一。坝高库大,填筑材料主要由杂砂岩和部分页岩(泥岩)组成,坝体变形尤其是后期变形,坝体材料分区、压实标准及变形控制,适应坝体变形的止水结构,面板设计,大坝填筑施工期间雨季时段长,降雨量大,解决大坝施工期反渗排水问题等是设计工作中的重点和难点。已有的监测成果表明:在巴贡面板堆石坝的设计、施工中所采用的技术是合适的。  相似文献   

19.
对三峡工程初期蓄水大坝变形监测成果的分析表明:大坝基础水平位移很小,处于稳定状态;坝基垂直位移总体呈沉降趋势,最大沉降量21.58mm,相邻坝段坝体沉降量绝大多数小于1mm,无不均匀沉降;左厂1~5号坝段等部位基础水平位移很小,坝基沉降量相对较小,无不均匀沉降;升船机上闸首坝段由于建基面高程较高,受蓄水影响不大,水平和垂直位移变化不大。总之,大坝变形量值均在设计范围内,规律合理,大坝工作性态正常,大坝是安全的。  相似文献   

20.
面板堆石坝是现阶段国内外运用较多的实用坝型,其大坝蓄水初期是对工程的重大考验。对缅甸道耶坎面板堆石坝蓄水初期的监测资料进行了整理分析,重点对关系到大坝安全运行的堆石体变形、面板挠度变形、面板周边缝变形和大坝渗流4个重要监测物理量蓄水前后的关键数据进行对比,总结了道耶坎面板堆石坝蓄水初期的变形规律。为工程首次蓄水期安全运行提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号