首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采沙河床桥墩冲刷研究   总被引:14,自引:3,他引:11  
齐梅兰 《水利学报》2005,36(7):0835-0839
本文根据冲刷机理的不同,将采沙河床桥墩冲刷分成三部分:(1)采沙坑背水面边坡由于增加了水流比降容易形成溯源冲刷,(2)桥渡压缩水流过流断面增大水流挟沙力引起一般冲刷,(3)桥墩周围涡旋流造成局部冲刷。总的冲刷是三种冲刷的叠加。本文采用分步法计算了某河流采沙河床桥墩冲刷深度,各部分不同的冲刷机理采用相应的冲刷计算方法。结果表明采沙坑对桥墩安全的影响与沙坑尺度及其距大桥的距离有关。  相似文献   

2.
黄河下游桥渡冲刷计算问题探讨   总被引:4,自引:2,他引:2  
对现行规范推荐公式用于黄河下游桥渡冲刷计算存在的问题进行了探讨.结果表明:现行规范推荐的桥渡冲刷公式存在理论基础薄弱、适应性差等缺陷;进行非黏性土河床桥渡一般冲刷计算时,参量选取的任意性或人为性较大,受初始断面形态尤其是河槽最大水深的影响过大,不能反映水流泥沙条件变化对桥渡冲刷的影响,甚至不考虑河床组成的影响;进行非黏性土河床桥渡局部冲刷深度计算时,选用的泥沙起动流速公式使计算的桥墩局部冲刷深度偏大较多,且在概念上反映不出一般冲刷与局部冲刷的关联影响;采用黏性土河床桥渡冲刷公式计算时,因液性指数取值的人为性很大,故使计算的冲刷深度变化较大.为克服现行规范推荐公式的局限性,建议引用由输沙平衡原理建立的最大冲刷水深公式及黄河桥渡冲刷公式进行复核计算,并采用模型试验等手段进行验证.  相似文献   

3.
桥墩局部冲刷深度的准确预测对跨河桥梁设计有重要的影响,是决定桥墩基础埋置深度的关键因素。该文基于桥墩局部冲刷机理分析及能量平衡理论,建立了适用于砂质河床窄墩深流型、过渡型和宽墩浅流型流场的局部冲刷平衡深度的预测方程。通过与实验数据对比,分别得到清水冲刷和动床冲刷时不同流场类型所处的深宽比范围。选取代表性实验数据对方程的适用性进行了验证。与已有预测方程的误差对比分析表明,根据流场类型分别建立冲刷深度预测方程,能有效提高预测的精度。  相似文献   

4.
桥墩基础局部冲刷深度是确定基础埋深和保证桥梁安全运营的重要参数。针对桥墩基础局部冲刷深度不同的计算公式在量纲和谐、一般冲刷深度及河床形态和床沙组成对局部冲刷深度的影响进行对比分析,并结合工程算例,对计算结果进行对比。研究表明:对于单墩桥墩,HEC-18公式和包尔达柯夫公式计算较为简便,且HEC-18公式的计算结果偏安全;对于复杂群桩承台桥墩,中国铁道科学研究院新公式比较规范,采用公式所考虑的因素更多,结果更安全。  相似文献   

5.
桥墩基础施工河床局部冲刷研究   总被引:4,自引:2,他引:2  
天然河流中水流受到建筑物的阻碍时,产生紊动涡旋,局部河床泥沙在水流紊动剪应力作用下起动,并被涡旋流带向下游,建筑物局部河床因此受到侵蚀而下降,形成局部冲刷坑。跨河大桥桥墩的局部冲刷就是如此。桥墩及其基础与水深或河床的相对位置影响着局部冲刷深度的发展。本文通过室内试验研究了桥墩下部钢围堰基础施工的相对高程对河床局部冲刷最大深度的影响,探讨了工后钢围堰顶部处于相对水深的不同高度时局部冲刷发展的规律,并将这些影响因素用墩形系数法计入局部冲刷深度计算中,给出了计算公式。本文的研究对目前跨江及跨海大尺度桥墩基础工程施工具有指导意义。  相似文献   

6.
1 引言在水平水舌或自由跌水作用下,局部冲刷是溢洪道、涵洞出口和泄水闸门等水工建筑物设计中极为重要的参数。因冲刷内部水流和冲刷过程之间的关系难以建立,故目前的研究仍基于开发经验和观测的极限冲刷深度经验公式。 Mason和Arumugam(1985)总结考查了近60年间提出的31个冲刷深度公式后发现,冲刷深度完全可仅采用单宽流量q和水头差H计算,而勿需作更为复杂的考虑。他们认为,最能令人满意的公式形式为 h=K((q~xH~y)/d~z) (1)式中h——冲刷深度;d——平均粒径;x、y、z、K——系数。然而,这种形式的公式并未包括时间参数。作者在文中提出了一种依据能量消耗预测冲刷  相似文献   

7.
三峡工程水头高,流量大,下游河床冲刷成为人们的关注点,根据大量原型观测资料,下游河床冲刷与河床工程地质条件密切相关,必须用水力和工程地质两个学科相给的观点去研究河床冲刷问题,这里提供的冲刷坑计算方法和目前水工模型试验提出一个笼统的冲坑概念是不同的,与目前一些公式的冲坑计算方法也是不一样的,而是更符合实际。  相似文献   

8.
潼关以下黄河三门峡库区汛期冲刷规律分析   总被引:3,自引:1,他引:2  
通过实测资料对1974年以来三门峡库区溯源冲刷和沿程冲刷进行了分析,指出了溯源冲刷的范围,初步研究了溯源冲刷的发展过程及其与入库流量、坝前水位和河床条件等之间的关系,并对沿程冲刷及其与水沙的关系进行分析,明确了大流量时沿程冲刷和溯冲刷是水库冲刷的主要形式,是增大水库排沙的主要途径。  相似文献   

9.
枢纽下游河床冲刷深度和水位降落估算方法   总被引:1,自引:0,他引:1  
通过清水冲刷水槽试验,在探索非恒定输沙及床沙调整等规律的基础上,结合沙量平衡原理,建立了一种枢纽下游河床冲刷深度和水位降落的计算模式。洪峰过程可以概化为一种恒定的"当量流量",深槽冲刷以枯水边界作为脱离体,可将该模式延伸于天然河道。能够计算冲刷过程及终期河床冲刷纵剖面和不同流量下的水位降落。  相似文献   

10.
瓯江二桥主桥墩局部冲刷试验研究   总被引:2,自引:0,他引:2  
本文采用系列模型试验方法,对瓯江二桥主要桥墩局部冲刷问题进行了研究,试验结果表明主桥墩最大冲刷深度与上游流量及主桥墩轴线走向有关,对径流为百年一遇洪水流量,主桥墩轴线走向与水流流向一致时,其最大冲刷深度为11.69m,主桥墩纵轴线与流向夹角为20°时,最大冲刷深度为14.81m,试验得到施工围堰局部冲刷与流量的关系,得出最大冲刷深度,并提出围堰局部冲刷的防护措施。  相似文献   

11.
对黑河河道演变进行了分析;根据公路行业冲刷计算公式对河道一般冲刷及建桥后桥墩局部冲刷进行计算,分析得出了拟建桥梁桥墩处的最佳埋深。研究结果为桥梁的设计提供了相应的技术依据。  相似文献   

12.
桥墩振动对其局部冲刷的影响   总被引:1,自引:0,他引:1  
为了探究桥墩振动对其局部冲刷的影响,以圆柱型桥墩为例,开展了不同泥沙底床条件下的振动桥墩局部冲刷水槽试验。结果表明,在振动载荷下,对于中值粒径分别为14.42μm、31.75μm和85.92μm的细颗粒底床,当振动强度从0增大至3.72,最大冲刷深度和最大冲刷半径均随之增大;中值粒径为14.42μm的泥沙底床最大冲刷深度增幅最大达910%,且粒径越大,增幅越小。对于中值粒径为260μm的粗颗粒底床,当振动强度从0增至2.31,最大冲刷深度降低了37.50%,而最大冲刷半径增加了38.37%。因此,桥墩的振动对其局部冲刷有着重要影响,且对细颗粒底床和粗颗粒底床的影响不同。桥墩振动导致有黏性的细颗粒泥沙发生流变从而加剧了其局部冲刷;而无黏性的粗颗粒泥沙受到振动作用而加密,其局部冲刷削弱。提出了考虑桥墩振动的局部冲刷深度计算公式,其理论计算值与实测值相对误差在±20%的数据达87.5%,能够为涉水桥梁基础埋深的设计提供更合理的计算依据。  相似文献   

13.
桥墩的局部冲刷导致河床形态变化和桥墩基础埋深减小是桥梁水毁的主要原因。在大涡模拟(Large Eddy Simulation,LES)的基础上结合水流运动方程和泥沙运动的动理学理论系统地对桥墩基础处的水流冲刷问题进行全时段全方位的三维数值模拟。得到了桥墩基础处的湍流流场流线图及河床形态变化的高程图。重点研究了水流流速和河床颗粒中值粒径对桥墩周边局部冲刷的影响。结果表明:冲刷坑的深度随着初始流速的增大而增加,且冲刷坑形成速度加快;冲刷坑的深度随着河床颗粒中值粒径的减小而增大,但是当颗粒的中值粒径小到一定程度时,由于泥沙颗粒之间的黏聚力增大导致冲刷坑的深度反而减小。  相似文献   

14.
为了保证郑焦铁路黄河大桥桥梁基础安全,同时尽量避免桥梁基础因设计偏于安全而造成工程投资的增加,按单宽流量、河势以及桥墩防护的多种组合,开展了桥墩基础局部冲刷试验研究,分析了桥墩局部冲刷的水流现象、冲刷坑形态和冲刷深度。结果表明:局部冲刷最深点在承台下的桩群之间,略偏向桥轴线上游部位;墩后形成带状淤积体,淤积体随单宽流量的增大而增大。水流方向与桥轴线正交时,桥墩周围的局部冲刷坑形态基本沿桥墩轴线对称分布;水流方向与桥轴线法线存在夹角时,冲坑范围扩大、冲坑深度明显增深,桥墩两侧马蹄形旋涡不再对称分布。墩前抛石护底后,局部冲刷坑深度明显变浅。  相似文献   

15.
针对并线桥墩在多沙河流上的局部冲刷问题,采用1:100正态模型水槽对桥梁平面正交在不同形状、上下游不同桥梁间距的桥墩布置进行了系列试验研究,对上下游桥墩在不同水流强度、不同桥梁间距条件下的局部冲刷过程进行系统观测和分析。结果表明,桥墩并线时,桥墩周围水流流态较为复杂,受上游墩阻水绕流影响,下游墩周围水流紊动强度减小,流速减弱。当上下游桥墩距离较近时,上下游桥墩局部冲刷坑深度均小于相应单独桥墩,下游桥墩冲深小于上游桥墩冲深,这种差异随桥梁间距的增大而逐步减弱。随着水流强度及桥墩尺度的增大,下游桥墩不受上游桥墩影响的距离相应增大,当流速为2 m/s、墩径为2~8 m时,其影响距离约为350~660 m。  相似文献   

16.
塔基(桥墩)的局部冲刷问题是跨河工程规划、设计中需考虑的重要课题。受限于地形、地质、经济条件等因素,斜交塔基(桥墩)逐渐用于跨河工程中。然而,目前研究侧重正交塔基(桥墩)的局部冲刷问题,对斜交塔基局部冲刷规律研究较少,因此,以某斜交塔基工程为例,通过概化模型试验研究了斜交塔基的局部冲刷规律。研究结果表明:与正交塔基相比,斜交塔基偏向侧流速增幅大于塔基背向侧流速;冲刷坑最大冲刷深度较大,且最大冲刷位置位于塔基偏向侧;冲刷坑呈不对称的马蹄形,且塔基偏向侧冲刷范围大于背向侧;塔基防护后,以上趋势减弱。研究成果为解决跨江大桥或电缆通道建设中的斜交塔基局部冲刷问题提供了参考借鉴。  相似文献   

17.
一些桥梁受地形和线路的制约,桥位不得不采取与河渠斜交的穿越方式,造成桥墩较大的阻水作用.采用经验公式计算与数值模拟两种方法对某铁路斜交桥的行洪影响进行分析,研究了不同洪水条件下的壅水高度与范围、桥梁一般冲刷与局部冲刷深度、桥梁对行洪断面的阻水比.研究表明:桥梁设计基本满足要求,建桥后河势变化不大,但行洪断面的阻水比偏大.拟建桥采用与既有桥对孔布置,可以减小双桥对行洪的阻滞影响.提出了疏浚开挖边滩来补偿工程占用河槽行洪面积,经计算分析该方案,可以有效减小阻水比与壅水高度,减轻工程局部冲刷,有利于区域行洪安全.  相似文献   

18.
冬季寒冷的北方河流易形成冰盖或冰塞,冰盖的存在对桥墩附近局部冲刷产生影响。在清水冲刷条件下,试验研究了有无冰盖条件下,不同流速和水深对桥墩附近局部冲刷的影响。研究结果表明:对比明流条件,冰盖的存在导致更大的近底流速和近底流速梯度,从而桥墩局部最大冲刷深度更大;其它条件相同的情况下,随流速的增大,桥墩局部最大冲刷深度增大;随着桥墩墩径增大,桥墩局部最大冲刷深度增加;水深增加时桥墩局部最大冲刷深度相对减小。根据试验数据,给出了有冰盖条件下桥墩局部最大冲刷深度的计算公式,与国内外相关试验数据吻合较好。  相似文献   

19.
为验证模型试验坝下动床冲刷坑形态与原型之间的差异,探讨下游冲刷演变过程,用散粒料模拟冲刷岩基,选取3组典型工况复演三峡枢纽蓄水以来泄洪坝段下游冲刷情况。研究表明不同阶段的典型试验工况与相对应条件的原型实测地形整体形态基本相似,说明冲坑形态演变与岩基地质特性有关。  相似文献   

20.
模型试验中冲刷地形测绘装备相对落后,致使桥墩周围局部冲刷瞬时地形数据无法实时获取,冲刷动态发展过程及机理的模型试验研究工作难以开展。研制了一种模型桥墩局部冲刷瞬时地形数据等值线自动绘制装备,并利用室内水工模型试验优化了各组成的性能指标,量化了绘制装备的设计参数,分析了监测系统在模型应用中的测绘精度及在工程原型中的适用性。模型试验研究表明,该装备结构简单,操作方便,加工制作成本较低,精度及灵敏性较高,能够快速获取动态过程中局部冲刷瞬时地形等值线,适用于局部冲刷发展影响流场特性研究中的水下地形快速测绘,也可按放大比尺制作成型后应用于涉水建筑物周围水下地形监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号