首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Integrated water resources management at river basin scales and evaluation of effects of climate change on regional water resources require quantitative estimates of space-time variability of monthly discharges within a river network. This study demonstrates that such estimates, which can be called stream water availability, for regional river basins with meager or nonexistent gauge data, can be obtained by combining continuity models of hydrological processes, flow routing, and topology of the river basin. The hydrologic processes can be adequately modeled using high quality databases of hydrologic significance. A stream water availability model is presented for Upper Indus Basin (UIB) utilizing the most up-to-date datasets for topography, temperature, precipitation, net radiation, land cover, soil type, and digital atlas. Multiple datasets have been evaluated and the ones with best accuracy and temporal coverage have been selected for the final model. Upper Indus River and its major tributaries are highly significant in regional water resources management and geopolitics. However, UIB is a poorly studied and largely ungauged river basin with an area of 265,598 km2 and extremely rugged topography. Several factors, the chief ones being the challenging terrain and the trans-boundary nature of the basin, have contributed to this knowledge gap. Hydro-climatologically it is a complex basin with a significant cryospheric component. The spatial and temporal variation of the principal climatic variables, namely precipitation, net radiation, and temperature has been thoroughly accounted for in the development of a stream water availability model based on a process model coupled with a topologic model and a linear reservoir model of river flow routing. Model calculations indicate that there are essentially two hydrologic regimes in UIB. The regime that is truly significant in contributing stream flows, originates from the UIB cryosphere containing outstanding glaciers and snowfields. The other regime, generated from wet precipitation and melt water from seasonal snow covers is insignificant due to high rates of infiltration and evaporation in the semi-desert environment prevailing at elevations below perennial snow and ice covers. In general, the modeled stream flow characteristics match with the sparse discharge measurements that are available. Flow in the Indus considerably increases at its confluence with Shyok River and further downstream where other tributaries form the north join the main stem. At or near the outlet of the basin stream flow can vary from less than 800 m3 s − 1 in the winter and spring to nearly 8,000 m3 s − 1 in the peak summer and can persist to over 1,500 m3 s − 1 in the autumn. The importance of snow and glacial melt in Indus River discharge is apparent and any global or regional climate change affecting the equilibrium line elevation of the snow fields in the Karakoram will have a profound influence on the water availability in the Indus. Estimates are made for per capita water availability in Ladakh and Gilgit-Baltistan territories, controlled by India and Pakistan respectively. Geopolitical significance and climate change effects are discussed briefly.  相似文献   

2.
Increasing urbanization changes runoff patterns to be flashy and instantaneous with decreased base flow. A model with the ability to simulate sub-daily rainfall–runoff processes and continuous simulation capability is required to realistically capture the long-term flow and water quality trends in watersheds that are experiencing urbanization. Soil and Water Assessment Tool (SWAT) has been widely used in hydrologic and nonpoint sources modeling. However, its subdaily modeling capability is limited to hourly flow simulation. This paper presents the development and testing of a sub-hourly rainfall–runoff model in SWAT. SWAT algorithms for infiltration, surface runoff, flow routing, impoundments, and lagging of surface runoff have been modified to allow flow simulations with a sub-hourly time interval as small as one minute. Evapotranspiration, soil water contents, base flow, and lateral flow are estimated on a daily basis and distributed equally for each time step. The sub-hourly routines were tested on a 1.9 km2 watershed (70% undeveloped) near Lost Creek in Austin Texas USA. Sensitivity analysis shows that channel flow parameters are more sensitive in sub-hourly simulations (Δt = 15 min) while base flow parameters are more important in daily simulations (Δt = 1 day). A case study shows that the sub-hourly SWAT model reasonably reproduces stream flow hydrograph under multiple storm events. Calibrated stream flow for 1 year period with 15 min simulation (R 2 = 0.93) shows better performance compared to daily simulation for the same period (R 2 = 0.72). A statistical analysis shows that the improvement in the model performance with sub-hourly time interval is mostly due to the improvement in predicting high flows. The sub-hourly version of SWAT is a promising tool for hydrology and non-point source pollution assessment studies, although more development on water quality modeling is still needed.  相似文献   

3.

Various computer models, ranging from simple to complex, have been developed to simulate hydrology and water quality from field to watershed scales. However, many users are uncertain about which model to choose when estimating water quantity and quality conditions in a watershed. This study compared hydrologic/water quality models including Spreadsheet Tool for the Estimation of Pollutant Load (STEPL)-Purdue, Soil and Water Assessment Tool (SWAT), High Impact Targeting (HIT), Long-Term Hydrologic Impact Assessment (L-THIA), Pollutant Load (PLOAD), Spatially and Temporally Distributed Model for Phosphorus Management (STEM-P), Region 5, and ensemble modeling (using STEPL-Purdue, SWAT, L-THIA, PLOAD, and STEM-P). Model capabilities, inputs, and underlying methods to estimate streamflow, surface runoff, baseflow, nutrients, and sediment were examined. Uncalibrated, calibrated, and validated outputs of these models and uncalibrated ensemble modeling in estimating water quantity and quality for a 41.5 km2 agricultural watershed in Northeastern Indiana were explored, and suggestions were provided on the selection and use of models. Models need to be selected carefully based on the simulation objectives, data availability, model characteristics, time constraints, and project budgets.

  相似文献   

4.
More than 60 catchments from Northern Belgium ranging in size from 16 to 3160 km2 have been studied by means of a physically-based stochastic water balance model. The parameter values derived from calibration of the model were regionally mapped for the study region. Associations between model parameters and basin lithological characteristics were established and tested. The results show that the simple conceptual monthly water balance model with three parameters for actual evapotranspiration, slow and fast runoff is capable either to generate monthly streamflow at ungauged sites or to extend river flow at gauged sites. This allows a fairly accurate estimation of monthly discharges at any location within the region.  相似文献   

5.
Like many impaired Great Lakes tributaries, Apple Creek, Wisconsin (119 km2) has Total Maximum Daily Load (TMDL) targets for reducing suspended sediment and total phosphorus by 51.2 % and 64.2 %, respectively. From August 2017 - October 2018, a stream sediment budget and fingerprinting integrated study was conducted to quantify upland and stream corridor sources of suspended sediment and sediment-bound phosphorus. Phosphorus concentrations varied among source groups and fluvial sediments, with higher concentrations among suspended sediment and cropland soils. Eroding streambanks identified in the stream corridor sediment budget accounted for 100 % of the TMDL Soil and Water Assessment Tool (SWAT) suspended sediment load but only 20 % of the total phosphorus load. Fine-grained streambed sediment equated to approximately-three years of modeled suspended sediment load but only one third of total phosphorus load. The two primary sources of fine-grained streambed sediment were streambanks and cropland, with relative streambank contributions increasing with downstream direction and watershed area. The relative proportion of suspended sediment varied by season and streamflow; however, cropland and streambank erosion accounted for 54 % and 23 % of the suspended sediment when weighted by of the proportion for representative streamflow. Urban land was a source in the upper watershed, but the signature was sequestered by a mid-watershed detention basin. Contributions from construction sites were higher in the fall 2018, likely corresponding to increased activity following a wet spring. These integrated techniques helped describe sources, transport, and sinks of fluvial sediment and phosphorus throughout the watershed at a range of spatial and temporal scales.  相似文献   

6.
From 1950s to 1980s, various observational studies around the globe found a significant decrease in surface solar radiation (SSR), which reversed in late 1980s for most of the countries including India. SSR observations at 12 stations located across India revealed that a much stronger dimming has reappeared during the last decade (2006–2015) after a brightening during 1996–2005. In the present study, effects of renewed solar dimming on actual evapotranspiration and runoff were analyzed using a semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) in 24 river basins (ranging from 1260 to 40000 km2) located in peninsular India. For these river basins, calibration (2003–2009) and validation (2010–2014) were performed using the observed daily discharge data, obtained from water resources information system (WRIS) of India, with a 3 year warm up period (2000–2002). The sequential uncertainty domain parameter fitting algorithm (SUFI-2) of SWAT-CUP (calibration and uncertainty program) was used with modified Nash–Sutcliffe efficiency (MNS) as the objective function to calibrate 13 model parameters, which can potentially affect streamflow. In nearly all the river basins, the p- and r-factor of 95 percentage prediction uncertainty (PPU) were more than 0.7 and less than 1, respectively. At daily timescale, MNS values were more than 0.5 in most of the river basins, reaching up to 0.66 and 0.71 during calibration and validation periods, respectively. Calibrated model was used to analyze the water balance of these river basins and different sets of experiments (with observed SSR trends) were performed to find SSR impacts on it. The model was simulated with and without the observed declines in SSR trends. The average change in SSR (in terms of evaporation equivalent) was −267.93 ± 100.92 mm/day/year (−5.62 ± 2.12%) with maximum reaching up to −417.12 mm/day/year (−8.99%). Due to this SSR change, actual evaporation was reduced resulting in 18.97 ± 9.78 mm/day/year (4.13 ± 2.50%) change in percolation. The percolation changes were higher for river basins having areas covered by forests and cropland/woodland, and having loam and sandy-clay soils. The increase in runoff generated was 6.90 ± 3.42 mm/day/year (2.14 ± 1.58%) with a maximum of 15.25 mm/day/year (7.56%) whereas corresponding increase in streamflow was found to be 9.93 ± 5.27 mm/day/year(4.21 ± 2.38%) with a maximum of 26.71 mm/day/year (11.86 %). The study reveals that the recent observed SSR changes are significant enough to have resulted in increased streamflow in the monsoon dominated tropical river basins of India.  相似文献   

7.
昆明市松华坝水源区小流域土壤侵蚀分析   总被引:1,自引:0,他引:1  
以1993-2009年松华坝水源区及昆明市的气象资料、2009年土地利用资料、第二次全国土壤普查资料、水源区牧羊河小流域的径流和泥沙观测资料为基础,用SWAT模型模拟分析了牧羊流域土壤侵蚀的空间差异。结果表明:牧羊河小流域输沙在年际上表现为与年降水量和输沙量峰谷变化具有较好的一致性,在年内表现出,输沙主要集中在6-9月;空间上牧羊河土壤侵蚀模数多年平均值介于21.4~4 586.5 t/(km2·a),且以中轻度为主,土壤侵蚀模数的空间变化与土地利用类型和地形坡度密切相关;土壤侵蚀模数与降水在年际变化上有较好的一致性。这一研究可为水源区土壤侵蚀空间分布的掌握和估算,以及制定有针对性的水土保持措施提供重要的理论依据。  相似文献   

8.
In the present study, soil erosion assessment of Dikrong river basin of Arunachal Pradesh (India) was carried out. The river basin was divided into 200 × 200 m grid cells. The Arc Info 7.2 GIS software and RS (ERDAS IMAGINE 8.4 image processing software) provided spatial input data and the USLE was used to predict the spatial distribution of the average annual soil loss on grid basis. The average rainfall erositivity factor (R) for Dikrong river basin was found to be 1,894.6 MJ mm ha−1 h−1 year−1. The soil erodibility factor (K) with a magnitude of 0.055 t ha h ha−1 MJ−1 mm−1 is the highest, with 0.039 t ha h ha−1 MJ−1 mm−1 is the least for the watershed. The highest and lowest value of slope length factor (LS) is 53.5 and 5.39 respectively for the watershed. The highest and lowest values of crop management factor (C) were found out to be 0.004 and 1.0 respectively for the watershed. The highest and lowest value of conservation factor (P) were found to be 1 and 0.28 respectively for the watershed. The average annual soil loss of the Dikrong river basin is 51 t ha−1 year−1. About 25.61% of the watershed area is found out to be under slight erosion class. Areas covered by moderate, high, very high, severe and very severe erosion potential zones are 26.51%, 17.87%, 13.74%, 2.39% and 13.88% respectively. Therefore, these areas need immediate attention from soil conservation point of view.  相似文献   

9.
Nestos River flows through Bulgaria and Greece and discharges into the North Aegean Sea. Its total catchment area is around 6,200 km2, while the mean annual precipitation and runoff are 680 mm and 40 m3/s, respectively. The Hellenic part of the catchment has undergone a substantial hydroelectric development, since two dams associated with major hydropower pumped-storage facilities are in operation. The main objective of the paper is to assess the expected sediment delivery of Nestos R. at the uppermost Thisavros reservoir site. This has been carried out by implementing the Universal Soil Loss Equation in a GIS environment for determining the mean annual soil erosion in conjunction with a suspended sediment measurement program (114 measurements in total) accomplished between 1965 and 1983 adjacent to the dam site. The sediment discharge rating curve between sediment and river discharges in a power form has been constructed using five alternative techniques, namely (a) the linear regression of the log-transformed variables, (b) the same as (a) but with the Ferguson correction, (c) different ratings for the dry and wet seasons of the year, (d) the nonlinear regression, and (e) the broken line interpolation that utilizes different rating parameters for two discharge classes. It is shown that the mean annual sediment yield is almost equal for all rating curve formulations and varies between 178.5 t km−2 and 203.4 t km−2 and the highest value results from the broken line interpolation method. Accordingly, the sediment delivery ratios vary slightly between 17% and 19% of the upstream soil erosion.  相似文献   

10.
Now and in the future, the flows of the Upper Indus Basin (UIB) are and will be depended upon by hundreds of millions of people for their food security and economic livelihoods. Communities in the headwater reaches of the UIB—which contribute the bulk of runoff for the basin—are equally deserving of improved living conditions, but often lag behind downstream communities in benefitting from infrastructure. Harsh and highly variable climatic conditions pose specific challenges for local agricultural activities in the headwater reaches. Improved scientific understanding of tributary basin scale hydrology should support local development work as well as improvements to large scale infrastructure and water resource management. This study focuses on the challenge of providing meaningful quantitative information at the village/valley scale in the upper reaches of the UIB. The typology of the UIB hydrological regimes—as observed in large gauged basins—are examined, with special emphasis on annual cycles and interannual variability. Variations in river flows (as relative anomalies of discharge rates or runoff) are compared to observations of climate parameters (2 m air temperature, precipitation) from both local (point-based) observations and analogous parameters from remote sensing data products from the MODIS instrument. Although the temporal overlap is limited between river gauging data available to this study and the MODIS observational record, numerical analysis of relationships between relative anomalies in the spatial data and river gauging observations demonstrate promising potential of the former to serve as quantitative indicators of runoff anomalies. In order to translate these relationships to the scale of ungauged village/valley catchments, the available remotely sensed spatial data—snow covered area (SCA), land surface temperature derived (LST)—are assessed as analogues for meteorological point observations. The correlations between local (point-based) observations and remotely-sensed spatial data products are tested across a wide range of spatial aggregations. These spatial units range from the primary contributing area (nearly 200,000 km2) of the UIB at its downstream gauging station Besham to a small valley serving a minor settlement (10 km2). The shape and timing of annual cycles in SCA and LST are consistent across the range of spatial scales although the magnitudes of both intra-annual and interannual variability differ with both spatial scale and hydrological regime. The interannual variability exhibited by these spatial data products is then considered in terms of its potential implications for the smaller hydrological units. Opportunities for improvement and extension of this methodology are also discussed.  相似文献   

11.
The spatially distributed hydrologic model WetSpa is applied to the Torysa river basin (1,297 km2) located in Slovakia. Daily hydrometeorological data from 1991 to 2000 are used as input to the model. The spatial characteristic of the basin are described by three base maps, i.e. DEM, landuse and soil type, in GIS form using 100 m cell size. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. The model predicts the daily discharge values with a good accuracy, i.e. about 73% according to the Nash–Sutcliff criterion. Sensitivity analysis of the model parameters is performed using a model-independent parameter estimator, PEST. It is found that the correction factor for calculating the actual evapotranspiration from potential evaporation has the highest relative sensitivity. Parameter K gm which controls the amount of evapotranspiration from the groundwater has the least relative sensitivity.  相似文献   

12.
乌伦古河流域SWAT模型基础数据库构建   总被引:3,自引:0,他引:3       下载免费PDF全文
以西北内陆干旱区新疆乌伦古河流域为例,构建了乌伦古河流域SWAT模型土壤属性和气象数据库。土壤数据库的构建过程为:通过查阅《新疆土种志》获得所需基础土壤数据;运用MATLAB编程转换土壤粒径;采用SPAW软件计算土壤的水分参数。气象数据库的构建过程为:在中国气象共享服务网上下载地面气象数据并整理该数据为所需格式;运用SwatWeather.exe软件计算降水、气温、露点、风速和辐射数据,从而获得SWAT模型天气发生器参数。成功构建SWAT模型基础数据库,为模型在此流域的应用奠定基础。  相似文献   

13.
Runoff prediction in flood forecasting depends on the use of hydrological simulation models and on the input of accurate precipitation forecasts. Reliability of predictions thus obtained hinges on proper calibration of the model. Moreover, when the model is intended to be used systematically in operational forecasting of streamflows, the calibration process must take into account the variation of the model parameters over time, namely in response to changing weather and hydrological conditions in the basin. The goal of the study was to build a process to adjust, on a daily basis, the simulation model parameters to the current hydrological conditions of the river basin, in order for the model to be run operationally for prediction of the streamflow for the next 10-days period, and, thereby, to forecast the occurrence of flood events. Towards this end, hydrological simulations using the HEC-HMS model were performed, using a 3 h period time step. The present communication focuses on the hydrological model calibration and verification processes and on the evaluation of forecasts’ accuracy. The procedure was applied to a part of the largest (full) Portuguese river basin, the Mondego river basin, corresponding to the Aguieira dam section watershed, which comprises an area of 3070 km2. Four wet periods, associated with the occurrence of flooding, were selected for the calibration and verification of the model, by adjustment of the model parameters. The results of the study aim to define the optimal calibration parameters values to model the observed streamflow for various hydro-meteorological states, thus enabling adequate prediction of flow in flooding situations and proper application of the model in operational flood forecasting.  相似文献   

14.
In water resource studies, long-term measurements of river streamflow are essential. They allow us to observe trends and natural cycles and are prerequisites for hydraulic and hydrology models. This paper presents a new application of the stage-discharge rating curve model introduced by Maghrebi et al. (2016) to estimate continuous streamflow along the Gono River, Japan. The proposed method, named single stage-discharge (SSD) method, needs only one observed data to estimate the continuous streamflow. However, other similar methods require more than one observational data to fit the curve. The results of the discharge estimation by the SSD are compared with the improved fluvial acoustic tomography system (FATS), conventional rating curve (RC), and flow-area rating curve (FARC). Some statistical indicators, such as the coefficient of determination (R2), root mean square error (RMSE), percent bias (PBAIS), mean absolute error (MAE), and Kling-Gupta efficiency (KGE), are used to assess the performance of the proposed model. ADCP data are used as a benchmark for comparing four studied models. As a result of the comparison, the SSD method outperformed of FATS method. Also, the three studied RC methods were highly accurate at estimating streamflow if all observed data were used in calibration. However, if the observed data in calibration was reduced, the SSD method by R2 = 0.99, RMSE = 2.83 (m3/s), PBIAS = 0.715(%), MAE = 2.30 (m3/s), and KGE = 0.972 showed the best performance compared to other methods. It can be summarized that the SSD method is the feasible method in the data-scarce region and delivers a strong potential for streamflow estimation.  相似文献   

15.
The purpose of this study was to assess changes in streamflow in the Upper Rio Grande (URG) basin, as it exits the San Luis Valley (SLV) at the Lobatos gauge station, in relation to changes in local environmental drivers. Irrigation-dependent agriculture accounts for more than 85% of surface and ground water withdrawals in the SLV. Inflows of the Rio Grande and the Conejos and Los Pi?os rivers were aggregated into a single inflow into the SLV. Streamflow data were taken from gauges above all major diversions. Results of the analysis indicated annual streamflow at Lobatos declined by 400 hm3 after 1924, coinciding with increases in surface water extractions. Additional reductions of about 50 hm3 in annual streamflow, not accounted for by inflow reductions during the period 1925–1964, coincided with increases in groundwater extractions. In contrast, an increase of 12.5 hm3 in annual streamflow occurred during 1965–2007. The increases coincided with several changes, but were primarily related to extreme peak flow years during the period 1985–1987 and increased water deliveries in compliance with the Rio Grande Compact.  相似文献   

16.
We analyzed the hydrologic characteristics of the Nong Saeng Basin (19.72 km2) in northeast Thailand. Because the land use in this basin is very complex, applying a fully distributed model would be extremely difficult. Therefore, we developed a semi-distributed hydrologic model for this basin. The hydrologic model comprised upland, paddy, and pond models. The new bucket model was applied for upland fields, and a modified tank model was used for the paddy and pond models. In addition, water movement between different land uses was considered. The results showed that the hydrologic model developed for the study basin performed extremely well if water movement between different land uses was considered. We simulated the water storage characteristics for two sub-catchments within the basin: sub-catchment 1 included few earthen weirs, whereas sub-catchment 2 included several earthen weirs. Owing to the earthen weirs, the maximum differences in ponding paddy water were 19,997 m3 in 2002 and 16,897 m3 in 2003, corresponding to 48% and 41% of the total volume of ponds in sub-catchment 1 (41,287 m3), respectively. If earthen weirs were to be constructed over the entire basin, the annual runoff from the basin would decrease by 2.0–3.2%. Although the decrease of the annual runoff is little, the maximum differences between the daily runoffs under real and simulated conditions in terms of percentage differences are −44.3% in September 2002 and −36.5% in September 2003, and it is found that the downstream impacts are quite large at the end of rainy season.  相似文献   

17.
The construction of a dam converts the natural streamflow to human control. It is necessary to learn the accumulated effect of cascade dams on hydrological characteristics, sediment and nutrient pollution discharge. The current research describes the analysis and simulation of streamflow, sand concentration and nutrient pollutant discharge alterations caused by the construction of a cascade of eight dams along the Longliu section of the upper stream of the Yellow River. The analysis shows that the maximum monthly streamflow difference between the inlet and outlet of the Longliu section decreased from 430 to 115 m3/s, after the appearance of the cascade dams between 1977 and 2006. In the same period, the correlation coefficient (R 2) of monthly streamflow between the inlet and outlet of Longliu dropped from 0.959 to 0.375. The peak of streamflow shifted from June to May and October. The difference in sand concentration between two sections decreased from 0.52 to 0.39 kg/m3, which was the direct consequence of the operation of the reservoirs. The R 2 value of sand concentrations of the inlet and outlet were also reduced from 0.504 to 0.356. A t-test analysis indicates that the original hydrological nature was significantly disturbed by the cascade dams. The influence of the dams on nutrient pollutant transport was simulated by the SWAT model. This simulation suggests that the cascade dams decreased the discharge of total nitrogen and total phosphorus from 15.4 × 103 t and 1,996 t to 0.4 × 103 t and 328 t, respectively. In conclusion, the accumulated impact of cascade dams on streamflow, sand concentration and nutrient pollutant discharge were analyzed, which were helpful for understanding the environmental features of the entire watershed.  相似文献   

18.
GLUE Based Assessment on the Overall Predictions of a MIKE SHE Application   总被引:1,自引:1,他引:0  
The generalised likelihood uncertainty estimation (GLUE) approach was applied to assess the performance of a distributed catchment model and to estimate prediction limits after conditioning based on observed catchment-wide streamflow. Prediction limits were derived not only for daily streamflow but also for piezometric levels and for extreme events. The latter analysis was carried out considering independent partial duration time series (PDS) obtained from the observed daily streamflow hydrograph. Important data uncertainties were identified. For streamflow the stage-discharge data analysis led to estimate an average data uncertainty of about 3 m3 s − 1. For piezometric levels, data errors were estimated to be in the order of 5 m in average and 10 m at most. The GLUE analysis showed that most of the inspected parameters are insensitive to model performance, except the horizontal and vertical components of the hydraulic conductivity of one of the geological layers that have the most influence on the streamflow model performance in the application catchment. The study revealed a considerable uncertainty attached to the simulation of both high flows and low flows (i.e., in average terms 5 m3 s − 1 before the Bayesian updating of the prediction limits). Similarly, wide prediction intervals were obtained for the piezometric levels in relevant wells, in the order of 3.3 and 1.5 m before and after the Bayesian updating of the prediction limits, respectively. Consequently, the results suggest that, in average terms, the model of the catchment predicts overall outputs within the limitations of the errors in the input variables.  相似文献   

19.
This study applied a time series evapotranspiration (ET) data derived from the remote sensing to evaluate Soil and Water Assessment Tool (SWAT) model calibration, which is a unique method. The SWAT hydrologic model utilized monthly stream flow data from two US Geological Survey (USGS) stations within the Big Sunflower River Watershed (BSRW) in Northwestern, Mississippi. Surface energy balance algorithm for land (SEBAL), which utilized MODerate Resolution Imaging Spectro-radiometer (MODIS) to generate monthly ET time series data images were evaluated with the SWAT model. The SWAT hydrological model was calibrated and validated using monthly stream flow data with the default, flow only, ET only, and flow-ET modeling scenarios. The flow only and ET only modeling scenarios showed equally good model performances with the coefficient of determination (R2) and Nash Sutcliffe Efficiency (NSE) from 0.71 to 0.86 followed by flow-ET only scenario with the R2 and NSE from 0.66 to 0.83, and default scenario with R2 and NSE from 0.39 to 0.78 during model calibration and validation at Merigold and Sunflower gage stations within the watershed. The SWAT model over-predicted ET when compared with the Modis-based ET. The ET-based ET had the closest ET prediction (~8% over-prediction) as followed by flow-ET-based ET (~16%), default-based ET (~27%) and flow-based ET (~47%). The ET-based modeling scenario demonstrated consistently good model performance on streamflow and ET simulation in this study. The results of this study demonstrated use of Modis-based remote sensing data to evaluate the SWAT model streamflow and ET calibration and validation, which can be applied in watersheds with the lack of meteorological data.  相似文献   

20.
A major River Tigris tributary in Iraq, the Adaim River, has a Mediterranean river flow regime with a total basin area of 12,482 km2. The river catchment responds almost immediately to rainfall with apparently minimum storage (i.e. flashy stream). The river daily hydrograph showed a daily peak flow of 1,476 m3/s with substantial seasonal and random variability; the flow duration curve followed the two‐parameter lognormal probability distribution. Gamma and the two‐parameter Weibull probability distributions fitted the monthly mean river discharge for the period 1937–2012 well. Normal and gamma probability distributions were found to appropriately describe the distribution of the annual mean river discharge for the same period. Gumbel extreme value, Log Pearson type III, and the two‐parameter lognormal distributions gave a reasonable fit to the annual maximum discharge record for the river. A regression formula was used to fit the annual minimum discharge record, which has a significant number of zero values. There was a positive and significant correlation (r = 0.77) between the annual mean discharge at the measuring site and seasonal rainfall measured at Karkuk meteorological station located in the north central part of the basin. The rainfall record at Karkuk showed a significant decline in seasonal rainfall after 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号