首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
Periodic flooding plays a key role in the ecology of floodplain rivers. Damming of such rivers can disturb flooding patterns and have a negative impact on commercial fish yield. The Volga River, the largest river in Europe, has a regulated flow regime after completion of a cascade of dams. Here, we study effects of damming on long‐term discharge variability and flood pulse characteristics. In addition, we evaluate the effects of the altered flood pulse on floodplain ecosystem functioning and commercial fish yields. Our results indicate that both flood pulse and fish populations of the Volga–Akhtuba floodplain have varied considerably over the past decades. After damming, annual maximum peak discharges have decreased, minimum discharges increased, but average discharges remained similar to pre‐damming conditions. Moreover, because of bed level incision of over 1.5 m, a higher discharge is needed to reach bankfull level and inundate the floodplains. Despite this significantly altered hydrological regime and subsequent morphological changes, current discharge management still provides significant spring flooding. However, commercial fish catches did decrease after damming, both in the main channel and in the floodplain lakes. All catches were dominated by species with a eurytopic flow preference, although catches from the main channel contained more rheophilic species, and floodplain catches contained more limnophilic and phytophilic species. The strong increase of opportunistic gibel carp (Carassius gibelio) around 1985 was apparent in the main channel and the floodplain lakes. Despite the hydrological changes, the decrease in overall catches, and the upsurge of gibel, we found a strong positive effect of flood magnitude in the previous year on commercial fish yield in the floodplain lakes. This suggests that under the current discharge management there still is an increased fish growth and/or survival during high floods and that functioning of the floodplain is at least partly intact. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Floodplain lakes are important aquatic resources for supporting ecosystem services, such as organismal habitat, biodiversity, and the retention of nutrients and sediment. Due to geomorphic alteration of river channels and land-cover change, degradation to floodplain lakes in the Ohio River basin is occurring at a rate that will escalate as climate change causes increased flood intensity and the seasonal redistribution of rainfall. A better understanding of the local drivers that affect oxbow lakes is needed for targeted floodplain restoration efforts designed to slow degradation. We examined the effects of land cover, topography, and hydrologic connectivity on water quality and fish diversity and abundance in nine floodplain lakes with potentially high remnant ecological function in the Wabash-White watershed (Indiana, Ohio, and Illinois). Data collection included water-quality parameters; stable water isotopes; total phosphorus, total nitrogen, and chlorophyll-a; and fish community diversity and abundance. Results indicate that hay/pasture land cover and decreased topographic relief in the local oxbow watersheds, along with reduced river hydrologic connectivity, were related to an increase in total phosphorus, total nitrogen, and chlorophyll-a. Greater biodiversity and abundance in fish assemblages were evident in oxbow lakes that were more disconnected from the main channel. The results of this study suggest that hydrologic connectivity of oxbow lakes with the contributing drainage area and the main channel influence nutrients and fish communities. Knowing the influencing factors can help ecosystem managers better protect these valuable floodplain lake ecosystems and prioritize restoration efforts amidst increasing stressors due to climate and land-use changes.  相似文献   

3.
Hydrological changes associated with irrigation, in conjunction with increased nutrient concentrations and aquatic plant densities, have greatly impacted fish habitat values on the Burdekin River floodplain. The two most significant weeds in the Burdekin floodplain are water hyacinth (Eichhornia crassipes) and para grass (Urochloa mutica). Water hyacinth creates a base for the para grass (and then other weeds) to grow out into deeper water, creating weed mats that can then only be removed by mechanical means or floods of the largest magnitude. We attempted to rehabilitate floodplain lagoons by the mechanical removal of floating weed mats and monitored the result by measuring the subsequent effects on fish habitats and fish communities. Prior to weed removal, fish habitats were generally of poor quality, and fish community structure was skewed away from rich native assemblages to depauperate communities dominated in some instances by alien species. Poor water quality arising from floating weed mats is considered to be the main determinant of reduced fish abundance and diversity. After mechanical weed removal, recovery of water quality and physical habitat led to the re‐establishment of many native fish species. Key refuge habitats within the distribution channels were a critical source of recruits for fishes dispersing during times of elevated seasonal flows into the newly rehabilitated reaches. This study demonstrates that floating alien weed mats have significant negative effects upon aquatic communities and that mechanical removal of these weed mats (as opposed to chemical removal) results in dramatic improvements in native fish species richness and abundance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The rehabilitation of lowland rivers subjected to channelization and artificial levee construction should attempt to improve habitat heterogeneity and diversity of floodplain hydrological connectivity. However, rehabilitation efforts rarely consider the importance of variable lateral hydrological connectivity between floodplain waterbodies and main river channels (ranging from those permanently connected to those temporarily connected during river level rises), instead focusing on increasing individual floodplain waterbody connectivity. This study investigated the young‐of‐the‐year (YoY) fish communities in 10 artificial floodplain waterbodies of variable hydrological connectivity with the river Trent, England, between May and November 2006, inclusive. Floodplain waterbody connectivity to the main river was positively correlated with the number of species captured (alpha diversity), Shannon–Wiener diversity, Margalef's species richness index and the relative abundance of rheophilic species and negatively correlated with species turnover (beta diversity). YoY fish communities in poorly connected water bodies were most dissimilar to riverine communities. The results demonstrate the importance of variable lateral connectivity between artificial floodplain waterbodies and main river channels when rehabilitating lowland river fish communities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Drought significantly shifts the mix of functional groups present in river ecosystems and abundances of many aquatic fauna decline. The consequences of drought for fish often include the decline of ecological specialists and the predominance of generalist species. However, factors influencing the restructuring of littoral fish assemblages following prolonged drought in heavily regulated rivers are poorly understood. We compared the restructuring of littoral fish assemblages in 2 large connected lakes, which differ in hydrology and habitat availability, after 15 years of drought in their catchment. The once‐abundant and diverse fish assemblages showed limited signs of postdrought recovery after 5 years. There were differences between the 2 lakes related to the species present, their abundances, and the functional groups within fish assemblages. The functional groups present also shifted through time from alien‐dominated to freshwater generalist‐dominated. Only 2 of 5 native fish functional groups (freshwater generalist and diadromous) had increasing abundances (used as a proxy for recovery) following the drought, and these increases only occurred in the lake with the greater connectivity and diversity in habitat and hydrology. In contrast to patterns observed for natives, abundances of alien fishes in the littoral zone of the lakes declined after an initial spike in numbers associated with substantial river flows immediately following drought. This study shows that the recovery of native fish populations following prolonged drought in a heavily regulated semiarid river occurs over a time scale of years and recovery of some extant ecological specialists was incomplete after as many as 5 years.  相似文献   

6.
A comparative study of the fish communities in two lake ecosystems in Mali (Lakes Manantali and Selingue) was based on monitoring small‐scale fishery landings for a 13‐month period. The main difference between the two lakes is the fishing pressure, being higher in Lake Selingue and lower in Lake Manantali. The effects of fishing on the structure of the fish communities in the two lakes were analysed with the use of diversity indices, rank species abundance (RSA) and abundance–biomass comparative curve (ABC) methods. The diversity differed significantly between the lakes, being higher for Lake Selingue. Analysis of the community structure, using RSA curves, indicated a more regular distribution of the weights between fish species for Lake Selingue than for Lake Manantali. The two lakes exhibited different exploited fish community structures. For Lake Selingue, the fishery was based on smaller‐sized species, compared to that for Lake Manantali. The indicators based on the species composition of exploited fish communities, in terms of abundance and life‐history traits, seemed to be more relevant in this study. Indicators such as diversity indices and RSA curves depend strongly on the exploitation strategy, being unreliable for evaluating exploited fish communities from catch data.  相似文献   

7.
Anthropogenic alterations to large rivers ranging from impoundments to channelization and levees have caused many rivers to no longer access the floodplain in a meaningful capacity. Floodplain habitats are important to many riverine fishes to complete their life‐history strategies. The fish community and species of fish that inhabit floodplain habitats are often dictated by the type of habitat and the conditions within that habitat (e.g., temperature, water velocity, depth, and discharge). As mitigation and restoration projects are undertaken, it is imperative that managers understand how various habitat components will affect the fish community in floodplain habitats. We collected fish and habitat data from two restored side channels with different structural designs on the lower Platte River, Nebraska, to determine how habitat variables predicted species diversity and individual species presence. We found a decrease in discharge in the main‐stem river resulted in increased diversity in one of the side channels, with the greatest diversity values occurring during summer. No habitat variables performed well for predicting fish species diversity for an adjacent side channel with more uniform depth and velocity and no groundwater inputs. However, several native riverine fish species in this side channel were shown to be associated with high temperature, dissolved oxygen, main‐stem discharge, and discharge variability. These results highlight the importance of considering the physical design of restored floodplain habitats when attempting to enhance fish communities.  相似文献   

8.
Fish populations in the Brazos River, Texas, were surveyed monthly for 2 years to determine the relative influence of hydrology and habitat characteristics on the recruitment dynamics of seven species representing three divergent life history strategies. Surveys were conducted in two oxbow lakes with different flood recurrence intervals and the main river channel. The first year was relatively dry with few oxbow‐river connections, whereas year 2 was relatively wet and connections between the main channel and floodplain habitats were common. Oxbow lakes supported greater juvenile abundances of most species relative to the main channel and were particularly important for nest building species with parental care. The river channel supported small species with extended reproductive periods and large, long‐lived species that are able to store reproductive potential during sub‐optimal periods. Hydrologic isolation was associated with greater rotifer densities in oxbows, and species with the greatest fecundity produced strong year classes during this period. Hydrologic connectivity did not increase juvenile production for most species, suggesting that recruitment dynamics in the Brazos River are similar to predictions of the low flow recruitment hypothesis (LFR). These results suggest that both hydrology and habitat heterogeneity interact with fish life history strategy to determine optimal conditions for recruitment and all three factors must be considered in restoration strategies for floodplain rivers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Key variables in ecosystems tend to operate on widely different time‐scales. These time‐scales become relevant when a disturbance rocks the ecosystem. Here we try to explain the fast dynamics of plankton and nutrients in the water column of floodplain lakes after disturbances (inundations). We take advantage of natural experiments, that is occasional massive overflow of floodplain lakes with river water. We sampled 10 lakes in two floodplains along the Dutch river Waal monthly for 3 years, capturing the impact of three inundation events. The inundations reset the plankton as well as chemical composition of most lakes to largely the same state. While biologically inert macro‐ion data reflected a large and long lasting impact of the river water, dynamics of nutrients, phytoplankton and zooplankton communities between lakes diverged in a few weeks to regimes characteristic for the different lakes. While one spring inundation synchronized plankton dynamics to let the subsequent clear water phase occur at the same moment in different lakes, winter inundations did not have the same effect and apparently dynamics quickly diverged. Our results showed that effects of inundations and other processes that affect the state of the ecosystem should be studied considering the level of the slow components such as the sediment nutrient pool, fish stock and macrophyte communities. Plankton communities and lake water nutrient status give a practically instantaneous reflection of the condition of these slow components. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Fish passage through an experimental vertical‐slot fishway was assessed at a floodplain regulator on the Mekong River in Central Laos between April and July 2009. Experiments were conducted to investigate the influence of fishway floor slope (1v:15h or 1v:7.5h) on fish passage success with a view to developing a series of optimal design criteria for the construction of vertical‐slot fishways at other barriers to fish passage in the Lower Mekong Basin. A total of 14 661 fish from 73 species were captured during the experiments. Catches were dominated by riverine (white) (n = 51; 69% of total) and floodplain (black) species (n = 15; 20%) which represented 19 families in total. The work demonstrated that fish were actively attempting upstream passage from the Mekong River to an adjacent floodplain and displayed strong migratory behaviour during river level rises. Migratory activity was greatest during sharp rises in water level but reduced substantially when river level fell. Fish community composition varied greatly among the two fishway floor slopes and the control group. More fish species were collected from control samples, but the most fish and species were collected when the fishway was configured on a moderate hydraulic slope (1v:15h). A range of size classes were also collected from control and moderate‐slope groups, but steeper‐gradient catches were dominated by larger fish. This study demonstrated that vertical‐slot fishways could provide passage for a biodiverse fish community where fish move laterally onto floodplains. The construction of fishways which consider the local fish ecology and hydrology may therefore represent a valuable management tool to help restore important movement pathways for tropical freshwater fish. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Recent research has suggested that the Barmah‐Millewa forest (BMF) floodplain provides a particularly important spawning ground for carp in the Murray River and that there is a large export of juvenile carp from the BMF into other parts of the Murray River system. This study examined whether chemical analysis of otoliths (fish ear stones) represents a feasible technique for estimating the relative importance of particular sources of carp recruitment in the Murray River. Otolith chemical signatures were analysed for fish collected from three lakes on the BMF floodplain and from three major tributaries of the mid‐Murray River. A single site downstream of these potential sources of carp recruitment (Torrumbarry Weir) was then examined to estimate the relative contribution of the BMF and the tributaries to carp recruitment at this site. The results of the study suggest that at least some of the lakes on the BMF floodplain are important sources of carp in the mid‐Murray River. Using a maximum likelihood analysis of otolith chemical signatures, it was estimated that Barmah Lake and Moira Lake were the most likely recruitment sources for 98% of the fish collected from Torrumbarry Weir. The study demonstrates the potential application of otolith chemical analyses for determining the relative importance of potential recruitment sources of fish in rivers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The Upper Mississippi River is a dynamic floodplain river that has been largely transformed by navigational levees and dams since the 1930s. The pools upstream of each dam are lake‐like and only about the upper third of each reach retains a riverine character. In contrast, the Wisconsin River is not managed for commercial navigation and today its lower 149 km represent one of the least‐degraded large river reaches in central North America. Riverine reaches in both the Mississippi and Wisconsin rivers have similar macro‐habitats including numerous islands, large side channels, and connected backwaters and floodplain lakes. In this study, shoreline electrofishing samples were collected during summer 2002 and 2003 to characterize resident fish assemblages. We compared fish species abundance, biomass, and biotic integrity along main and side channel borders between the Upper Mississippi River and the Lower Wisconsin River. We expected that, in the absence of environmental degradation, fish composition and structure would be similar between the Mississippi and Wisconsin rivers, and between channel types within each river. Nonmetric multidimensional scaling and redundancy analysis revealed that fish species in the Mississippi River, unlike in the Wisconsin River, were characteristic of non‐riverine habitats. We consider non‐riverine fish assemblages indicative of environmental impairment. The main and side channel sites in the Mississippi River had more variable fish assemblages than the Wisconsin River. Analyses of fish index of biotic integrity scores showed that environmental condition was excellent for both channel types in the Wisconsin River, whereas in the Mississippi River the side channel was rated good and the main channel only fair. We conclude that differences between the two rivers and between channel types of the Mississippi River are consistent with direct and indirect effects of navigation. This study demonstrates the utility of a fish index of biotic integrity, an inexpensive and rapid bioassessment tool, for detecting change in ecological health on one of the world's largest rivers. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Floodplains and their associated wetlands are important features of semiarid and arid landscapes, providing habitat and refugia for native species as well as contributing to human needs for freshwater. Globally, floodplain habitats are some of the most modified ecological communities because of water resource development and land‐use changes. However, the hydrological changes that have occurred in highly variable semiarid and arid systems are rarely quantified in a way that helps us understand the consequences for different floodplain habitat types. This study investigated changes in floodplain‐river connectivity that have occurred because of water resource development on four floodplain habitat types in the Lachlan River Catchment, Australia: (a) temporary floodplain lakes, (b) intermittent river red gum (Eucalyptus camaldulensis) swamps, (c) intermittent black box (Eucalyptus largiflorens) swamps, and (d) terminal wetlands (wetlands along distributary creeks). Changes to floodplain‐river connectivity characteristics were calculated using their commence to fill thresholds and flow scenarios derived from a river hydrology model, enabling comparison of long‐term data sets (120 years) encompassing a range of climate conditions. Connection regime metrics have changed significantly in all floodplain habitats except intermittent black box swamps. Temporary floodplain lakes have experienced the greatest reduction in number of connection events (60% reduction), followed by intermittent river red gum swamps (55% reduction). Intermittent black box swamps and terminal wetlands have experienced the least change in number of connection events (35% reduction). The nature of the change in connection suggests a change in vegetation communities will occur in response to long‐term hydrological change.  相似文献   

14.
Large floodplain rivers have internal structures shaped by directions and rates of water movement. In a previous study, we showed that spatial variation in local current velocities and degrees of hydrological exchange creates a patch‐work mosaic of nitrogen and phosphorus concentrations and ratios in the Upper Mississippi River. Here, we used long‐term fish and limnological data sets to test the hypothesis that fish communities differ between the previously identified patches defined by high or low nitrogen to phosphorus ratios (TN:TP) and to determine the extent to which select limnological covariates might explain those differences. Species considered as habitat generalists were common in both patch types but were at least 2 times as abundant in low TN:TP patches. Dominance by these species resulted in lower diversity in low TN:TP patches, whereas an increased relative abundance of a number of rheophilic (flow‐dependent) species resulted in higher diversity and a more even species distribution in high TN:TP patches. Of the limnological variables considered, the strongest predictor of fish species assemblage and diversity was water flow velocity, indicating that spatial patterns in water‐mediated connectivity may act as the main driver of both local nutrient concentrations and fish community composition in these reaches. The coupling among hydrology, biogeochemistry, and biodiversity in these river reaches suggests that landscape‐scale restoration projects that manipulate hydrogeomorphic patterns may also modify the spatial mosaic of nutrients and fish communities. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

15.
Natural river‐floodplain systems are characterized by their dynamic hydrology and diverse geomorphology resulting in a wide range of habitats that support high fish diversity and production. Various factors (e.g. hydrological dynamics, water quality, and biotic processes) have been proposed to explain fish distribution in large river floodplains, but it is still widely acknowledged that the mechanisms involved may vary in diverse floodplain systems and that they are not fully understood. To determine how flooding dynamics and floodplain geomorphology influence fish species distributions across the Volga‐Akhtuba floodplain, Russian Federation, we examined the distributions of eight species with respect to variables reflecting floodplain hydrology and geomorphology. On the basis of fish catches in 40 floodplain water bodies at the end of summer in 2006–2008, we found that frequency of occurrence of most fish species remained stable along the time. The distribution of fish species was strongly influenced by the size and shape of water bodies as well as flood extent. Therefore, the long‐term flood variability that drives the geomorphic heterogeneity of the floodplain creates suitable habitats across ranges of fish flow guilds (rheophilic, eurytopic, and limnophilic), resulting in high diversity of the floodplain ichthyofauna. We conclude that this diverse habitat availability is a highly significant factor influencing fish distribution in the Volga‐Akhtuba floodplain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Phytoplankton communities along the river Yamuna in Delhi stretch and its associated floodplain lakes showed considerable spatio‐temporal variations. Most of the species identified were cosmopolitan and typical of highly polluted rivers in tropical ecosystems. All the groups of phytoplankton with predominance of Cyanophyceae and some species of Chlorophyceae were distributed within the river stretch though with varying diversity and density. Relatively cleaner sites supported larger phytoplankton assemblages compared to those subjected to sewage outfalls and industrial effluents. Species elimination was observed mainly in the mid‐stretch and downstream of Okhla subjected to high loads of pollution. Co‐inertia analysis indicated significant co‐structures between water quality and species richness and density indicating water quality as the governing factor for phytoplankton distributions in the river stretch. Floodplain plays an important role in regenerating water quality thereby enhancing species richness and density. Floods play an important role in seasonal dynamics through dilution effects and promoting connectivity between river channel and floodplain lakes thereby facilitating species exchanges. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents the first study of the benthic invertebrate assemblages of the upper section of the Paraguay River, a major tributary to the Pantanal wetland in Brazil. Thirty‐eight sites were sampled along a 200 km section below the city of Cáceres in November 2000. Sixty‐nine species and morphospecies were identified, which were dominated by Oligochaeta and Chironomidae. Mean density of benthic invertebrates varied between 72 and 10 354 m?2 in the meandering sector of the river, 3611–49 629 m?2 in the straight–transitional sectors, 682–5962 m?2 in the floodplain lakes, and 1704–2208 m?2 in floodplain channels. Highest densities were attained in sand‐gravel sediments dominated by the psammophilous oligochaete Narapa bonettoi. The Shannon diversity index ranged from 0.75 to 2.08 and was highest in floodplain lakes. Statistical analysis (UPGMA and CCA) revealed that benthic assemblages in the floodplain habitats were clearly distinct from the riverine habitats. In the river channel, the habitats were distinguished by grain size while the floodplain habitats were mostly determined by current and silt‐clay concentration (floodplain channels) or by organic matter concentration (floodplain lakes). Conservation efforts in the Upper Paraguay area should aim to maintain the flood pulse as a permanent source of spatial and temporal habitat heterogeneity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
Despite the increasing use of fatty acids (FAs) as biomarkers in aquatic food web analysis, little information is available regarding differences in FA profiles of fish among habitat types in river–floodplain ecosystems. The objectives of this study were to (i) test whether the FA profiles of channel catfish (Ictalurus punctatus) differed among three reaches of the lower Kaskaskia River and its floodplain lakes, and (ii) to compare FA profiles among muscle, liver, and adipose fin tissues collected from these fish. Profiles differed significantly among sites, especially between upper and lower river sites, and between river channel and oxbow lake sites, suggesting differences in FA availability for channel catfish occupying different habitats and river reaches in the Kaskaskia River system. Specifically, the essential FAs 18:2n‐6 and 18:3n‐3 increased in catfish tissues from upstream to downstream reaches, which could reflect increased floodplain connectivity and decreasing impoundment effects downstream. Ratios of n‐3 to n‐6 FAs were higher in fish from oxbow lakes, perhaps suggesting increased use of autochthonous production in the floodplain relative to the main river channel. Muscle and adipose fin FA profiles exhibited similar location‐related trends, whereas liver FA profiles were markedly different from the other tissue types. These results suggest that adipose fin tissue samples may be a viable, less‐invasive alternative to muscle tissue for analysis of FA profiles in channel catfish. Our study supports the use of tissue FA profiles in identifying habitat utilization by channel catfish, and perhaps habitat‐specific energy contributions to riverine consumers. Furthermore, our work highlights floodplain habitat as a potential source of essential n‐3 FA and the associated importance of maintaining river–floodplain connectivity to support aquatic food webs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Floodplain habitats provide critical spawning and rearing habitats for many large‐river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Zooplankton are an important link in aquatic food webs of lakes serving as consumers of algae, bacteria, and other microorganisms and as prey for fish and invertebrates. Despite their importance, little is known about the structure of the zooplankton communities of subtropic, large, shallow, eutrophic freshwater lakes. Our investigation of zooplankton communities in Lake Taihu, a subtropic, shallow, eutrophic lake and the third largest lake in China provides new information on this subject. Zooplankton, phytoplankton, and water chemistry samples were collected monthly from July 2006 to June 2007 in Meiliang and Gonghu Bays of Lake Taihu. Thirty zooplankton species were identified in Meiliang Bay with small-bodied cladocerans Bosmina coregoni and Ceriodaphnia cornuta contributing 21% and 11%, respectively to total zooplankton abundance which averaged 459 ind/L. Thirty-five species were identified in Gonghu Bay with the rotifers Polyarthra trigla and Brachionus calyciflorus the dominant species, contributing 21% and 11% respectively to total zooplankton abundance which averaged 467 ind/L. Predation by lake anchovy (Coilia ectenes taihuensis) and ice fish (Neosalanx tangkahkeii taihuensis) likely accounted for the dominance of both bays by small-bodied species. Community structure and community patterns were correlated with differences in Microcystis blooms and organic matter levels (chemical oxygen demand) in the two bays. Based on canonical correspondence analyses dissolved total nitrogen, orthophosphate, Cyclotella and Pinnularia also contributed to variability in zooplankton community composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号