首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Studies suggest that oligotrophic lakes are net heterotrophic and act as net sources of CO2, whereas eutrophic lakes are net autotrophic and act as net CO2 sinks. Data on plankton community metabolism in Lake Taihu contradict this hypothesis. Here, the ratios of depth integrated gross primary production (GPP) to plankton community respiration (PCR) were less than one on 75% of the study sampling dates, indicating that this system was net heterotrophic. Partial pressure estimated for CO2 also indicated that the lake was a net source of CO2. Net heterotrophic conditions here may be related to limitation of phytoplankton photosynthesis by the poor underwater light climate (due to elevated suspended solids (SS) and nutrients originating in the catchment) and the preferential enhancement of respiration by high water temperatures. GPP and PCR were significantly correlated (PCR = 1.22GPP + 0.46, r2 = 0.80) indicating a partial dependence of heterotrophs on algal derived carbon. The slope of the regression line relating PCR to GPP was more similar to slopes found in rivers than in lakes, likely due to the large nutrient and SS load to the lake.  相似文献   

2.
The physical, chemical, and biological dynamics under changing atmospheric conditions of Laguna Lake, Philippines were analyzed from intensive observations. Diel measurements were conducted for 48 continuous hours for both dry and wet tropical seasons in addition to fine resolution long-term monitoring. Results revealed significant vertical and diel variations of lake variables in spite of a shallow water depth (2.5 m) caused by the intense surface heating from solar irradiance (~800 W m?2) and accentuated by the lake's high turbidity (16–32 ftu). Late afternoon land-lake breeze (~5–7 m s?1) regularly breaks daytime thermal stratification, and convective cooling at night maintains isothermal condition until dawn of the next day. The stratified condition demonstrated a wind-driven, density-induced 2-layer current pattern with a windward moving epilimnion (~4 folds faster) and a compensating hypolimnetic flow in the general lake circulation direction. Laguna Lake was observed to have a dominating diel cycle but also undergoes significant seasonal limnological variations brought primarily by climate, hydrology, and its interaction with the adjacent sea. Significantly correlated variations of pH, chlorophyll-a and DO in the dry season were indicative of the higher biological activity associated with the intrusion of polluted waters from Metro Manila. The non-occurrence of thermal over-turn was observed to be regularly followed by bottom hypoxic conditions (2–4 mg L?1), indicative of the eutrophic condition of the lake and the importance of diel wind-induced mixing in the bottom supply of DO. Laguna Lake was found to be predominantly net heterotrophic (GPP:R < 1, NEP < 0).  相似文献   

3.
The distribution, density, biomass and size-structure of the zebra mussel (Dreissena polymorpha) population in Lake Winnipeg were examined between 2017 and 2019. Zebra mussels have colonized most of the available hard substrate in the south basin and Narrows region, but colonization of the north basin remains low at present, even on suitable substrate. Numerical densities and shell free biomass peaked at 5530 ± 953 m?2 and 64.7 ± 57.9 g shell free dry mass m?2 respectively. The distribution appeared to be strongly limited by substrate type and availability, with further limitations on the distribution imposed by physical disturbance in shallow waters and unsuitable substrate in deeper areas of the lake. Zebra mussels <1 year old dominated the populations, and individuals >18 mm were exceedingly rare. Poor recruitment was observed at sites along the eastern side of the south basin compared to elsewhere in the lake. The proximate causes of these differences in colonization success and recruitment are not clear, but may be in part due to heterogeneous patterns of key physico-chemical environmental conditions such as calcium concentrations required for successful development of juvenile mussels and colder water temperatures in the north basin. This study provides a baseline of information on which to track further expansion of zebra mussels in Lake Winnipeg and assist efforts to develop an understanding of how zebra mussels may affect the ecology of Lake Winnipeg.  相似文献   

4.
The freshwater amphipod Diporeia is a dominant macroinvertebrate species in Lake Superior’s benthic community and an important prey item for many fish. A capacity to predict growth and production rates of Diporeia using a bioenergetics model requires information on physiological processes of the species. The objective of this study is to quantify oxygen consumption of Lake Superior Diporeia and to determine if respiration rate changes with body length. Diporeia were collected from Lake Superior and kept over natural sediment maintained at 4 °C. Dissolved oxygen levels for groups of immature (2 mm), juvenile (4 mm), and adult (6 mm) Diporeia in 20 ml microcosms were measured using a polarographic microelectrode. Mass-specific respiration rates for Lake Superior Diporeia ranged from 32.0 to 44.7 mg O2 g DW 1 day −1. A significant relationship between body length and mass-specific respiration rate (p > 0.1) was not found. The estimate of Diporeia respiration presented here is significantly higher (p < 0.05) than previous findings from populations in Lakes Michigan and Ontario. This study provides new data on respiration rates of Lake Superior Diporeia and compares findings to studies for other connecting Great Lakes.  相似文献   

5.
The limnology of offshore Lake Erie during periods of extensive (> 70%) ice cover was examined from ship borne sampling efforts in 2007 to 2010, inclusive. Dense and discrete accumulations of the centric filamentous diatom Aulacoseria islandica (> 10 μg Chl-a/L) were located in the isothermal (< 1 °C) water column directly below the ice and only detectable in the ship wake; viable phytoplankton were also observed within ice. Evidence from these surveys supports the notions that winter blooms of diatoms occur annually prior to the onset of ice cover and that the phytoplankton from these blooms are maintained in the surface waters of Lake Erie and reduce silicate concentrations in the lake prior to spring. The mechanisms by which high phytoplankton biomass rise at this time of year requires further investigation, but these winter blooms probably have consequences for summer hypoxia and how the lake responds to climate change.  相似文献   

6.
The invasive rainbow smelt (Osmerus mordax) was an abundant food source for Lake Winnipeg walleye (Sander vitreus), especially in the north basin of the lake, until the smelt’s collapse in approximately 2013. We quantified changing length-at-age (≈ growth rates) and relative mass (≈ body condition) in Lake Winnipeg walleye caught for a gillnet index data set. Here, walleye showed smaller length-at-age, particularly young fish in the north basin, over time. This approach to assessing growth suggests a constraint in the north basin fish, possibly a nutritional limitation between 2017 and 2018, that was not present in the south. We then analyzed a separate group of walleye (≥452 mm in fork length) sampled in 2017 as part of a large-scale tracking study, which had a similar slope in length-mass relationship to large walleye caught in that year for the gillnet index data. A panel of metabolites in whole blood samples associated with amino acid metabolism and protein turnover was compared. These metabolites revealed elevated essential amino acids in fish caught in the Dauphin River, and suggest that protein degradation may be elevated in north basin walleye. Therefore, based on both growth estimates and metabolites associated with protein balance, we suggest there were spatially distinct separations affecting Lake Winnipeg walleye with decreased nutritional status of walleye in the north basin of Lake Winnipeg being of particular concern.  相似文献   

7.
Autochthonous material has been found to be an important base in large river food webs. However, a spatial understanding of primary production in large rivers is lacking. We modeled primary productivity and community respiration (CR) during a low water period in two types of off‐channel habitat present in the Middle Mississippi River, side channels and wing dike fields. Wing dike fields are constantly connected to the main channel and are well mixed along most of their length, while side channels are typically connected only at the top and mouth. Gross primary production (GPP) in wing dike fields ranged from 0.0 to 8.9 g O2 m?2 D?1 and in side channels GPP ranged from 0.4 to 33.5 g O2 m?2 D?1. Both habitat types experienced periods of positive net ecosystem production (NEP) especially in the late summer and early fall. Correlations between metabolic rates and ecosystem characteristics differed between habitat types. Discharge was negatively correlated to NEP in wing dike fields but was not associated with metabolic rates in side channels. Light was positively correlated with GPP and CR at both site types and with NEP in side channels. These areas are protected from high velocity and likely experience greater light penetration, allowing more photosynthesis to take place especially during low water periods. This study demonstrates the potential for high productivity in off‐channel habitats that are permanently connected to the main channel. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Changes in the crustacean zooplankton community composition and abundance in Lake Winnipeg (1969–2006) provide a rare opportunity to examine their response to environmental changes in the largest naturally eutrophic lake on the Canadian prairies. Since 1929, zooplankton species composition in Lake Winnipeg has changed little except for the addition of the invasive cladoceran, Eubosmina coregoni in 1994. The dominant taxa in the lake in summer include: Leptodiaptomus ashlandi, Acanthocyclops vernalis, Diacyclops thomasi, Daphnia retrocurva, Daphnia mendotae, Diaphanosoma birgei, Eubosmina coregoni, and Bosmina longirostris. Climate-accelerated nutrient loading to southern Lake Winnipeg over the last two decades has led to increased phytoplankton abundance and higher frequency of cyanobacterial blooms especially in its northern basin. Crustacean zooplankton have likewise increased especially in the North Basin, but less so in the more nutrient rich South Basin, possibly as a consequence of higher densities of pelagic planktivorous fish and light-limited primary production compared with the more transparent North basin (Brunskill et al., 1979, 1980). Calanoid copepods play a larger role in the South basin food web in contrast to cyclopoid copepods and Cladocera in the North basin. The study begins to fill the recognized gap in understanding of Lake Winnipeg's food web structure and provides a baseline for evaluating ongoing changes in the zooplankton community with the arrival of new non-indigenous taxa, e.g. Bythotrephes longimanus and Dreissena polymorpha. It reinforces previous work demonstrating that zooplankton provide valuable indices toward evaluating the health of an ecosystem.  相似文献   

9.
Eutrophication has been linked to increased greenhouse gas emissions from inland waters. Phytoplankton blooms in Lake Erie have increased since the 1990s, although its greenhouse gas emissions are not well characterized. We measured CH4 and N2O concentrations and diffusive fluxes in four seasons around the entire lake, and CO2 fluxes in one summer season. Lake Erie is a source of CH4 all year across the lake, concentrated in spring and summer in the Western Basin. Methane emissions ranged from 0.03 to 14.87 mg C m−2 d-1. Methane is predominantly biogenic, and natural gas leaks are an insignificant source. While Lake Erie is an overall N2O source, it is an N2O sink in winter and occasionally during summer. Emissions of N2O ranged from −0.08 to 1.22 mg N m−2 d-1. We also measured CO2 fluxes in summer only, when Lake Erie is a small atmospheric CO2 sink. While areal fluxes of CH4 and N2O are similar to those observed elsewhere, total fluxes from Lake Erie are higher due to its surface area. Lake Erie emits ~ 6300 (±19%) metric tons of CH4-C yr−1 and ~600 (±37%) metric tons N2O-N yr−1: almost 500,000 metric tons CO2-eq yr−1 total. This is the first comprehensive dataset of CH4 and N2O concentrations and diffusive emissions in a very large lake. More measurements and monitoring are needed to determine whether increased eutrophication in the Great Lakes is tied to increased emissions of these powerful climate forcers in a possible positive feedback to climate warming.  相似文献   

10.
Concentrations of total mercury (THg) in the axial musculature of northern pike (Esox lucius), walleye (Sander vitreus), lake whitefish (Coregonus clupeaformis), and sauger (Sander canadensis) were analyzed from several regions of Lake Winnipeg and three main inflows, focusing on Mossy Bay in the North Basin of the lake. Length-standardized means (standard means) indicated THg concentrations in pike of 550 mm fork length (0.44 ppm) and walleye measuring 400 mm (0.38 ppm) from Mossy Bay were highest in 1971 and declined to 0.13 and 0.22 ppm, respectively, by 1974. Standard means of both these species have been similar since 2010 (walleye; approximately 0.11 ppm) and 2013 (pike; approximately 0.17 ppm), except for a significant increase to 0.15 ppm in walleye in 2019, potentially related to concurrent changes in trophic interactions with invasive fish and invertebrate species. Standard means of 300 mm long sauger (0.23–0.29 ppm) did not decline significantly between 1971 and 1974, and those of 350 mm long whitefish ranged from 0.006 to 0.028 ppm from 1983 to 2016 with no clear temporal trend. In concert with data from other areas of Lake Winnipeg and the three inflows for 2000–2019, these results indicate higher contemporary concentrations in the South Basin of the lake. This latitudinal gradient in fish THg is assumed to be a result of continuous mercury inputs from the Red and the Winnipeg River, whereas a former point source of industrial mercury in the Saskatchewan River is no longer relevant. According to human consumption limits based on tolerable daily intake calculations and current THg concentrations of fish from Mossy Bay, substantial quantities of whitefish, pike, and walleye fish can be safely eaten.  相似文献   

11.
With its important geographical location and status as the largest saltwater body in China, Qinghai Lake plays a vital role in the ecological environment of the northeastern part of the Qinghai-Tibet Plateau. Due to climate change and the subsequent adjustment of Qinghai Lake’s tourism policy, it is necessary to understand groundwater discharges in southeast of Qinghai lake both for ecological protection and risk prevention. This study used radium isotopes 223Ra and 224Ra to trace groundwater discharges and nutrients carried into the lake. The spatial characteristics of Ra isotopes with greater activity in the upper and bottom layers in the lake indicated that they were influenced by inputs of shallow groundwater and diffusion from sediments. The average 224Ra diffusion flux of the sediments in the Lake was 33.54 dpm m?2 d?1. Based on the 224Ra mass balance model, the discharge flux of shallow groundwater in this region was estimated to be 3.49 × 106 ~ 3.68 × 106 m3 d?1. The PO43? and SiO2 fluxes carried into the southeastern of the lake by groundwater were 1.78 × 1011 ~ 1.88 × 1011 mg/y and 2.22 × 1012 ~ 2.34 × 1012 mg/y, respectively. It is thus essential to monitor shallow groundwater discharge into Qinghai Lake for the protection of the water environment and prevention of potential ecological risks.  相似文献   

12.
Lake Winnipeg has experienced dramatic increases in nutrient loading and phytoplankton biomass over the last few decades, accompanied by a marked shift in community composition towards the dominance of cyanobacteria. Comprehensive lake-wide observations of algal blooms are critical to assessing the lake's health status, its response to nutrient management practices, and an improved understanding of the processes driving blooms. We present an analysis of the spatial and temporal variability of algal blooms on Lake Winnipeg using satellite-derived chlorophyll and indices for algal bloom intensity, spatial extent, severity, and duration over the period of ESA's MERIS mission (2002–2011). Imagery documented extensive blooms covering as much as 93% of the lake surface. Bloom conditions were analysed in the context of in-lake and watershed processes to gain further insight on the drivers of bloom events. Day to day bloom variability was driven primarily by intermittent wind mixing events, with quiescent periods leading to the formation of dense surface blooms. Seasonal bloom distribution was consistent with light limitation in the south basin and lake circulation transporting bloom material towards the north-east shore. Inter-annual variability in average bloom severity was related to both total phosphorus (TP) loadings and summer lake surface temperatures. Results provide a valuable historical time series of bloom conditions to which ongoing observations from Sentinel-3's OLCI sensor can be added for longer term monitoring and change detection.  相似文献   

13.
A comprehensive understanding of the sedimentation dynamics within Lake Winnipeg (surface area: 23,750 km2) and its role in sediment transport in the downstream river system was achieved by determining the properties of lake bottom sediment and patterns of sediment accumulation rates and by constructing a conceptual total (i.e., organic and inorganic) sediment budget. Net deposition was the governing process in the South and North Basins, whereas transportation dominated in the Narrows. The largest fluvial source of sediments to the lake, the Red River, supplies 35% of the total sediment load. Although accumulation rates in profundal zones progressively decreased northward from this source at the south end of the lake, high accumulation rates with low inventories of fallout radionuclides in the northern margin of the North Basin indicate a second sediment source, which was determined to be erosion of north shore banks, which accounts for up to 50% of the total sediment load to the lake. The nearshore-offshore gradient in bottom sediment properties in the North Basin confirmed that the signature of this source can reach at least 20 km southward into the lake. However, the properties of bottom sediments, sedimentation dynamics, and sediment budget suggested that some of the materials eroded from the north shore are exported without interaction with the lake bottom and this local sediment source is the dominant source for the downstream river system. It was concluded that Lake Winnipeg effectively disconnects the downstream Nelson River from sediment transport processes in its upstream watershed (953,250 km2).  相似文献   

14.
We detail our attempts at empirical modeling of MODIS derived Chlorophyll a (Chl a) distribution on Lake Victoria in East Africa and consequently its trophic status. This was motivated by the need for Lake Victoria specific algorithms, as the current satellite based standard algorithms overestimate derived Chl a. In situ Chl a data was hence collected in three field campaigns in November 2014, March 2015 and July 2015. In situ reflectances were collected during the July campaign only. We first developed models from in situ reflectances and in situ Chl a, which when applied to MODIS bands performed dismally (R2 = 0.03). We then proceeded to derive empirical models by directly comparing MODIS bands with in situ Chl a based on data collected in November 2014 and July 2015. The March 2015 dataset couldn’t be used due to cloud cover hence no matchups could be obtained. The best model derived (R2 = 0.88) was based on the ratio 488 nm/645 nm, and was then used to determine the trophic status of Lake Victoria using Carlson’s Chl a Trophic State Index (TSI). The results show that large areas of the lake are mesotrophic with eutrophic displays closer to the shores. The modeled TSI was then validated against in situ TSI derived from the March dataset and posted an 80% matchup. One of the main challenges, however is the prevalence of cloud cover, which hinders synoptic mapping of the lake. That notwithstanding, the study demonstrates the potential of earth observation in providing accurate TSI information for improved management of Lake Victoria.  相似文献   

15.
Understanding patterns of fish movement in large lake ecosystems is essential for determining appropriate management actions as differences in movement behaviour can influence life history traits such as growth and survival. Lake Winnipeg in Manitoba, Canada supports the 2nd largest walleye (Sander vitreus) commercial fishery in North America. We used mark-recapture models to determine movement and estimate survival of walleye between basins of Lake Winnipeg in historical and contemporary contexts, comparing a tag-recovery study completed historically during 1974–1977 with a contemporary (2017–2019) acoustic telemetry study. Mark-recapture models revealed comparably low but detectable annual transitions between basins from historical (0.3–1.2%) and contemporary datasets (7–8.5%). Historically, fish > 300 mm more frequently moved in a south to north direction. Contemporary estimates suggest similar length-based directionality in that fish > 350 mm were always more likely to move in a south-north direction. Contemporary annual survival derived from mark-recapture models ranged between 27 and 45% and 64.3% when derived from catch curve analysis, while independently derived annual historical survival estimates ranged between 50 and 69% and 45.5% from catch curve analysis. Using the contemporary dataset, we also observed seasonal variation in movement and survival between basins, with the greatest movement across the lake occurring during the fall. Our results demonstrate a persisting pattern of low but measurable movement, suggesting between basin movement is not unusual for Lake Winnipeg. Further, low walleye survival rates reported here for the two time periods studied, support recent management actions to reduce fishing pressure across the lake.  相似文献   

16.
The Maumee River is an important source of phosphorus (P) loading to western Lake Erie and potentially a source of Microcystis seed colonies contributing to the development of harmful algal blooms in the lake. Herein, we quantified P forms and size fractions, and phytoplankton community composition in the river–lake coupled ecosystem before (June), during (August), and after (September) a large Microcystis bloom in 2009. Additionally, we determined the distribution and density of a newly emergent cyanobacterium, Lyngbya wollei, near Maumee Bay to estimate potential P sequestration. In June, dissolved organic phosphorus (DOP) was the most abundant P form whereas particulate P (partP) was most abundant in August and September. Green algae dominated in June (44% and 60% of total chlorophyll in river and lake, respectively) with substantial Microcystis (17%) present only in the river. Conversely, in August, Microcystis declined in the river (3%) but dominated (32%) the lake. Lake phytoplankton sequestered < 6% of water column P even during peak Microcystis blooms; in all lake samples < 112 μm non-algal particles dominated partP. Lyngbya density averaged 19.4 g dry wt/m2, with average Lyngbya P content of 15% (to 75% maximum) of water column P. The presence of Microcystis in the river before appearing in the lake indicates that the river is a potential source of Microcystis seed colonies for later lake blooms, that DOP is an important component of early summer total P, and that L. wollei blooms have the potential to increase P retention in nearshore areas.  相似文献   

17.
As part of the Lake Michigan Mass Balance Project, total and methyl mercury were determined for lake trout (Salvelinus namaycush) and five forage fish species collected from Lake Michigan near Saugatuck, Michigan, and Port Washington, Sheboygan Reef, and Sturgeon Bay, Wisconsin, between 1994 and 1995. With a mean concentration of 179 ng/g wet wt., whole lake trout total mercury (HgT) concentrations ranged between 27.6 and 348 ng/g wet wt. For combined sites, 1–4 yrs, 5–6 yrs, 7–11 yrs, and 12–15 yrs lake trout mean HgT concentrations were 73.7, 130, 212, and 280 ng/g, respectively. Forage fish species alewife (Alosa pseudoharengus), bloater (Coregonus hoyi), slimy sculpin (Cottus cognatus), deepwater sculpin (Myoxocephalus thompsoni), and rainbow smelt (Osmerus mordax) had mean HgT concentrations of 63.8, 55.3, 36.7, 51.4, and 35.2 ng/g wet wt., respectively. With the exception of alewife, bloater, and slimy sculpin, all fish species contained approximately 100% methyl mercury (MeHg). Field bioaccumulation factors (BAF) were consistent with a Lake Michigan food chain that is more efficient at transferring MeHg to higher trophic levels than some inland lakes. This and other studies of lake trout from Lake Michigan document decreasing HgT concentrations in lake trout from 1971 to 1985 and constant or increasing concentrations between 1985 and 2000. These observations were supported by a similar trend in Lake Michigan Hg sediment fluxes. To our knowledge, this is the most intense two year study of mercury in fish for any Great Lake or other large fresh water system and is one of the most complete studies of mercury cycling in the Lake Michigan food chain.  相似文献   

18.
While nutrient loading has affected all levels of Lake Winnipeg’s ecology, its greatest influence has likely been on the microbial community. In addition to eutrophication, zebra mussels (Dreissena polymorpha) have recently invaded the ecosystem and threaten food web dynamics. Their filter-feeding predation and association with bacteria, specifically phototrophs, was investigated. A sampling trip to Lake Winnipeg in October 2017, focused on the isolation, enumeration, and identification of aerobic anoxygenic phototrophs in littoral water, sediment, and tissues of mussels. Gimli, Patricia, and Grand beaches, separated by >15 km across the South Basin, had similar bacterial counts when cultivated on rich organic, BG-11, purple non-sulphur, and K2TeO3-supplemented media. Culture-based enumeration on rich organic medium revealed 1.74% of heterotrophs from littoral waters were aerobic anoxygenic phototrophs, and represented 13.98% within sediments. In contrast, 0.48, 1.15, and 0.16% of cultured heterotrophs were aerobic anoxygenic phototrophs within zebra mussel gill, gut, and gonadal tissues, respectively. High-throughput sequencing of bacterial 16S V4 rDNA maintained similar trends in respective bivalve organs, where 0.22, 1.13, and 0.20% of total 16S genes belonged to these phototrophs. Several Sphingomonadaceae isolates were recovered from gut tissues, all with filamentous morphology large enough for predation. Bioaccumulation of metals was also studied in D. polymorpha. All tested associated aerobic anoxygenic phototrophs were capable of resisting the metalloid oxide tellurite. The consistent distribution of aerobic anoxygenic phototrophs within microbial communities across Lake Winnipeg, and their predominance in the gut tissues of zebra mussels suggested bacterial consumption by this invasive species.  相似文献   

19.
In 2014, 94 paired neuston net samples (0.5 mm mesh) were collected from the surface waters of Lake Superior. These samples comprise the most comprehensive surface water survey for microplastics of any of the Great Lakes to date, and the first to employ double net trawls. Microplastic abundance estimates showed wide variability, ranging between 4000 to more than 100,000 particles/km2 with most locations having abundances between 20,000 to 50,000 particles/km2. The average abundance in Lake Superior was ~30,000 particles/km2 which was similar to previous estimates within this Laurentian Great Lake and suggests a total count of more than 2.4 billion (1.7 to 3.3 billion, 95% confidence interval) particles across the lake’s surface. Distributions of plastic particles, characterized by size fraction and type, differed between nearshore and offshore samples, and between samples collected in the eastern versus western portion of the lake. Most of the particles found were fibers (67%), and most (62%) were contained in the smallest classified size fraction (0.50–1 mm). The most common type of polymer found was polyethylene (51%), followed by polypropylene (19%). This is consistent with global plastics production and results obtained from other studies. No statistically significant difference was detected between the paired net samples, indicating that single net sampling should produce a representative estimate of microplastic particle abundance and distribution within a body of water.  相似文献   

20.
Lake Winnipeg is the 10th largest freshwater lake in the world and, like many of the world’s great lakes, it is increasingly being affected by anthropogenic pressures, such as high nutrient loads and invasive species. The consequences of these on the hydrology and ecology of the lake are the focus of continuing research, funded by the renewed investment of Federal and Provincial agencies. Complicating this, Lake Winnipeg is still very much a wilderness lake and despite two decades of research there is much we don’t know. This second special issue on Lake Winnipeg is a collection of 21 research articles that describe some of the most recent and emerging research on the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号