首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
300 m级高堆石坝的流变变形不可忽略。对最大坝高达到312 m的双江口心墙堆石坝上下游坝壳料进行了流变试验,发展和完善了计算流变变形的数学模型并整理了相关计算参数,采用三维有限元方法分析了流变对大坝变形的影响。结果表明:(1)坝料流变引起的广义剪应变随应力水平的增加而增加,引起的体积应变增量随围压的增加而增加,亦随应力水平的增加而增加;(2)流变引起的变形增量在填筑与蓄水期为自上下游两侧向心墙方向挤压,而在运行期则是由心墙向上下游两侧挤压;(3)考虑流变变形后蓄水期坝体最大沉降增加约22%,而运行期的流变变形相对较小。  相似文献   

2.
总结了高心墙堆石坝动力分析方法与最新研究进展,给出了不同动力计算方法的优缺点及动力分析研究发展方向。研究表明,300 m级超高心墙堆石坝动力响应特性研究应包括坝体加速度反应、残余变形、心墙动强度及坝坡稳定等内容。结合文献研究成果分析,指出超高心墙堆石坝地震破坏模式为:首先坝坡面出现局部松动滚石、坝体产生变形及裂缝;坝坡累积的滑动变形逐渐加大,坝坡开始坍塌;心墙及上游反滤料动强度不足范围从坝顶向下逐渐加深,以致坝坡的整体稳定性进一步被削弱或塌滑。综合残余变形、防渗心墙抗剪强度、坝坡稳定等方面的极限抗震能力评价标准,表明我国300 m级超高心墙堆石坝能承受地震动峰值加速度0.45g^0.60g的动荷载。  相似文献   

3.
总结了高心墙堆石坝动力分析方法与最新研究进展,给出了不同动力计算方法的优缺点及动力分析研究发展方向。研究表明,300 m级超高心墙堆石坝动力响应特性研究应包括坝体加速度反应、残余变形、心墙动强度及坝坡稳定等内容。结合文献研究成果分析,指出超高心墙堆石坝地震破坏模式为:首先坝坡面出现局部松动滚石、坝体产生变形及裂缝;坝坡累积的滑动变形逐渐加大,坝坡开始坍塌;心墙及上游反滤料动强度不足范围从坝顶向下逐渐加深,以致坝坡的整体稳定性进一步被削弱或塌滑。综合残余变形、防渗心墙抗剪强度、坝坡稳定等方面的极限抗震能力评价标准,表明我国300 m级超高心墙堆石坝能承受地震动峰值加速度0.45g~0.60g的动荷载。  相似文献   

4.
为了优化设计和安全评价,对某300 m级超高直心墙堆石坝和作为比较方案的斜心墙堆石坝进行了三维有限元应力变形计算。对坝体堆石料采用邓肯张E-B非线性弹性模型,对高塑性黏土与混凝土结构接触面采用Goodman单元模型,分43级荷载对坝体的施工和蓄水过程进行模拟,比较分析两种坝型在蓄水期坝体和心墙的应力和变形性状。结果表明,相对直心墙方案,斜心墙方案计算所得坝体的最大水平位移相对较小,垂直沉降较大。斜心墙方案下心墙两岸坝肩处高应力水平区域有所减小,可以适当改善心墙上游面单元的应力和变形条件。斜心墙方案下心墙的拱效应相对较弱,其抗水力劈裂的性能稍好。  相似文献   

5.
廖瑜  余定仙 《人民珠江》2023,(S2):232-237
在各种荷载和环境因素的长期作用下,风化料坝体堆石随时间逐渐发生变形,过大的变形影响大坝安全稳定。为研究沥青混凝土心墙风化料坝在运行期较长时间的坝体稳定性问题,依托工程实例中叶水库沥青混凝土心墙风化料坝,基于三维流变分析Burgers模型,模拟大坝在蓄水后运行期10 a的流变过程,计算流变位移及应力变化。结果表明:竖向最大流变位移为25.37 mm,发生在河床段坝顶;水平向最大流变位移为9.48 mm,发生在左岸坝肩坝顶位置;大主应力极值、小主应力极值相比初次蓄水期增加7.75%、3.79%。坝体流变位移在前3 a增加较快,进入第3~10 a后,流变位移增量逐渐趋于稳定。综上,中叶水库大坝在运行期的10 a内流变变形较小,应力增加较小,沥青混凝土心墙风化料坝的流变规律与堆石坝流变规律基本一致,同时说明大坝是安全稳定的。  相似文献   

6.
观音岩水电站混合坝在竣工后发生了较大的流变变形,导致土石坝坝段在蓄水一个月后出现了裂缝。为分析坝体裂缝产生的原因,采用并行变异粒子群算法,根据观音岩混合坝竣工后的坝体沉降观测数据反演了筑坝堆石料和心墙料的流变参数。进一步根据反演参数进行了坝体的三维有限元计算,分析和预测了大坝在蓄水期和运行期的变形特性。结果表明,较大的蓄水期不均匀沉降及较大的坝体流变变形是坝体产生裂缝的主要原因。  相似文献   

7.
针对砾质土蠕变特性的研究成果较少,原因在于砾质土含有大量渗透性较低的细粒,大试样固结排水效果差,难以获得较好的蠕变试验成果。采用在砾质土大型三轴试样中钻孔灌砂以加速试样的排水固结的方法,进行了某高土质心墙堆石坝砾质土心墙料的蠕变试验,获得了砾质土心墙料的蠕变模型及参数,建立了高心墙坝的三维有限元模型,采用非线性有限元研究了砾质土心墙料蠕变特性对坝体应力变形的影响。研究成果表明:九参数幂级数蠕变模型能较好地描述砾质土的蠕变特性;上、下游坝壳的蠕变对心墙自身变形的影响较小,需要在坝体应力变形计算中考虑心墙料蠕变的影响;当心墙料的蠕变速率快于周围堆石体时,蠕变效应会进一步增加心墙拱效应,反之,蠕变效应会减小心墙拱效应。  相似文献   

8.
恰甫其海水库大坝安全监测系统   总被引:1,自引:0,他引:1  
1大坝安全监测项目及布置恰甫其海水利枢纽工程拦河坝为粘土心墙堆石坝,属1级建筑物,最大坝高108m,坝顶长度362m,坝顶宽12.0m,上游坝坡1∶2.5,下游综合坝坡1∶2.33,顶宽6.0m,心墙上、下游边坡1∶0.3,其大坝安全监测主要布置了坝体变形、心墙土压力、渗流、渗流量等监测项目。其中:坝体表面变形监测包括竖向位移和水平位移,在上游坝坡、坝顶及下游坝坡设置监测表面变形监测点;坝体内部变形监测为心墙内部的沉降和水平位移(测斜);坝体土压力监测主要监测粘土心墙是否会产生拱效应;坝体渗流及绕坝渗流监测是重点监测项目,在坝体上选取3个剖面,…  相似文献   

9.
为研究沥青混凝土心墙坝抗震能力,以新疆尼雅水库为例,利用大型三轴仪进行动模量阻尼比和永久变形试验,分析筑坝材料的动力特性,并采用等效线性黏-弹性模型和大工双曲线残余变形模型对坝体进行地震反应分析。结果表明:砂砾料和过渡料的最大动剪切模量比堆石料高4%~11%,而堆石料的最大阻尼比比砂砾料和过渡料高4%~14%;心墙沥青混凝土的最大动剪切模量随着围压和固结比的增大而增大;地震动力反应时,坝体各方向最大位移、加速度和最大永久变形均发生在坝顶处,且顺河向最大位移为0.042 m,最大加速度为4.98 m/s~2,坝体上下游土体顺河向可产生拉应力破坏,心墙最大永久变形发生在坝顶处,坝体的最大沉降比心墙高0.035 m,坝体与心墙协调变形能力较强。结果表明,尼雅沥青混凝土心墙坝"金包银"结构具有良好的抗震性能。  相似文献   

10.
基于邓肯-张E-B材料本构模型,采用大型通用有限元软件ADNIA,对某沥青混凝土堆石坝进行了应力变形有限元计算,以便研究其应力应变特性.并在计算结果的基础上对沥青混凝土心墙的邓肯-张材料模型参数杨式模量、凝聚力、体积模量等进行了敏感性分析.坝体有限元计算结果表明:坝体上、下游坝坡附近小范围内出现拉应力;坝体应力在心墙附近有突变,出现了拱效应;各参数的变化对心墙的应力应变影响程度不一,其中杨式模量K、杨式模量指数n属于高敏感性参数,而体积模量指数m为低敏感性参数.为确保大坝安全,在上、下游坝坡采取必要的护坡措施,同时在大坝填筑施工时应适当提高上、下游坝坡附近坝体的压实标准;为保证心墙的稳定安全,适当调整沥青混凝土的配合比,并根据试验计算调整心墙的变形模量,使之和过渡料的模量协调一致,尽量减小沉降差异带来的不利影响.  相似文献   

11.
瀑布沟心墙堆石坝是我国目前已建采用宽级配砾石土作为心墙坝防渗料的最高心墙堆石坝。堆石坝坝基为深厚河床覆盖层,最大深度达78 m。坝基覆盖层采用各厚1.2 m的全封闭式混凝土防渗墙防渗。介绍了瀑布沟大坝防渗墙安全监测的情况。监测结果表明,大坝防渗墙工程施工质量优良,性能良好,满足设计要求。瀑布沟堆石坝防渗工程的成功建设把我国防渗墙施工水平提升到了一个新的高度,对今后防渗墙设计与施工具有重大意义。  相似文献   

12.
瀑布沟大坝防渗墙应力分布特性及机理探讨   总被引:1,自引:1,他引:0  
瀑布沟水电站大坝为砾石土心墙堆石坝,坝基为深厚河床覆盖层,最大深度达到75.36 m。坝基覆盖层防渗采用两道各厚1.2 m的全封闭式混凝土防渗墙。为了探讨防渗墙的应力分布特性,首先,根据瀑布沟水电站大坝施工期应变监测成果,综合分析墙体应变变化分布特征;其次,基于混凝土徐变和应力松弛理论,应用松弛法将混凝土应变转换为应力;最后,综合各相关影响因素对防渗墙应力分布机理进行探讨。结果表明:偏应变所占比例基本上在5%以内,施工期防渗墙未出现较大偏心受压的情况;防渗墙最大压应力发生在墙体中部,其量值为顶部和底部的7~9倍;影响防渗墙应力分布的主要原因是墙体和河床覆盖层不均匀沉降(变形不协调)而产生的负摩阻力。分析指出:在防渗墙的结构设计中应重点考虑负摩阻力的影响。  相似文献   

13.
水布垭水利枢纽页岩风化料击实和渗透特性试验研究   总被引:2,自引:1,他引:1  
郭熙灵  李思慎 《人民长江》1996,27(12):18-20
设计中中的清江水布娅水利枢纽大坝为227m高的心墙堆石坝,其心墙防渗料的主要料源为页岩风化料。由于风化料、砾质土较之纯粘土具有更高的强度、变形模量和抗渗透破坏的能力以良好的施工性能,将其用作高土石坝防渗心墙材料已是世界上的坝工的潮流。结合水布娅水利枢纽的坝址比选,对页岩风化料工程性质进行了试验研究,研究成果表明,页岩风化料的级配具有宽组配,不连续、不稳定的特性,页岩风化料的击实性能良好,以全风化和  相似文献   

14.
瀑布沟砾石土心墙堆石坝是目前国内最高的心墙坝,坝高达186m,因抗震设防需要,在过渡料、堆石料范围内铺设土工格栅,确保整个大坝的安全运行,通过在施工过程中的摸索与经验总结,形成了一套有效控制土工格栅铺设的施工方法,供同类型工程施工参考.  相似文献   

15.
为改善作为心墙防渗料的含砾低液限黏土的强度和变形性质,对两河口水电站300 m级心墙堆石坝防渗料进行掺砾研究,分别进行了击实试验和力学性质试验。试验结果表明:随着掺砾比增大,心墙防渗料的最大干密度逐渐增大,最优含水率逐渐减小;掺砾比为40%的心墙防渗料的变形和强度性质较好,临界水力梯度最高;掺砾比为30%和40%的心墙防渗料的渗透系数更接近规范要求。推荐两河口水电站心墙堆石坝心墙防渗料的掺砾比为40%。  相似文献   

16.
瀑布沟砾石土心墙堆石坝工程,最大坝高186 m,根据施工设计拟定的填筑方法,开展有针对性的生产性试验。通过在施工中探索,全面了解砾石土的特性,摸索出砾石土施工方法和经验。据此提出一套科学且能够有效实施的砾石土填筑的方法,使心墙砾石土施工符合有关规范及技术要求。可供同类型工程参考。  相似文献   

17.
高混凝土面板堆石坝流变机理及长期变形预测   总被引:1,自引:0,他引:1  
对于面板堆石坝,面板的变形主要取决于堆石体变形,如果堆石体变形过大,就会使面板产生裂缝,从而影响其防渗性能,甚至危及坝体的稳定。由于堆石体流变变形的复杂性,影响的因素很多,因此仅仅通过室内试验很难从本质上反映其流变机理和特性,除了试样尺寸与现场的巨大差异引起的缩尺效应误差之外,就是平行试验成果间也会出现差异。回顾了近年来关于堆石体流变机理方面的一些研究进展,介绍了揭示堆石体流变细观机理的两个流变模型,即基于组构理论的流变模型和基于随机散粒体不连续变形理论的流变模型。最后结合正在建设中的水布垭高面板堆石坝进行了流变分析,预测了大坝完建后的流变变形,计算结果表明,考虑流变效应的最大沉降为2.53m,此值基本处在设计的预测范围之内。  相似文献   

18.
柏叶口水库面板坝坝体坐落在河床岩基及卵石混合土上,采用帷幕灌浆、趾板与面板形成整体防渗体系,是山西省此类型第一座在建高混凝土面板堆石坝。柏叶口水库面板堆石坝的设计施工,为国内面板坝的进一步发展提供了可供借鉴的成功经验。  相似文献   

19.
心墙堆石坝初次蓄水是事故高发期,特别是蓄水速度较快时,可能对坝体的应力变形安全造成一些不利影响,如后期变形增加且稳定延长,甚至引起心墙水力劈裂发生裂缝。为确保大坝安全,需对初次蓄水速度进行深入研究。本文依托糯扎渡电站高心墙堆石坝工程,从大坝的应力变形及心墙的抗水力劈裂特性等方面研究了初次蓄水时的大坝安全特性,并提出蓄水速度建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号